Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Multilevel Stochastic Approximation of the Value-at-Risk (2408.06531v1)

Published 12 Aug 2024 in q-fin.RM, math.PR, and q-fin.CP

Abstract: Cr\'epey, Frikha, and Louzi (2023) introduced a multilevel stochastic approximation scheme to compute the value-at-risk of a financial loss that is only simulatable by Monte Carlo. The optimal complexity of the scheme is in $O({\varepsilon}{-5/2})$, ${\varepsilon} > 0$ being a prescribed accuracy, which is suboptimal when compared to the canonical multilevel Monte Carlo performance. This suboptimality stems from the discontinuity of the Heaviside function involved in the biased stochastic gradient that is recursively evaluated to derive the value-at-risk. To mitigate this issue, this paper proposes and analyzes a multilevel stochastic approximation algorithm that adaptively selects the number of inner samples at each level, and proves that its optimal complexity is in $O({\varepsilon}{-2}|\ln {\varepsilon}|{5/2})$. Our theoretical analysis is exemplified through numerical experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.