Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient flow for a class of diffusion equations with Dirichlet boundary data (2408.05987v2)

Published 12 Aug 2024 in math.AP

Abstract: In this paper we provide a variational characterisation for a class of non-linear evolution equations with constant non-negative Dirichlet boundary conditions on a bounded domain as gradient flows in the space of non-negative measures. The relevant geometry is given by the modified Wasserstein distance introduced by Figalli and Gigli that allows for a change of mass by letting the boundary act as a reservoir. We give a dynamic formulation of this distance as an action minimisation problem for curves of non-negative measures satisfying a continuity equation in the spirit of Benamou-Brenier. Then we characterise solutions to non-linear diffusion equations with Dirichlet boundary conditions as metric gradient flows of internal energy functionals in the sense of curves of maximal slope.

Summary

We haven't generated a summary for this paper yet.