Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Adverse Weather Crowd Counting via Multi-queue Contrastive Learning (2408.05956v3)

Published 12 Aug 2024 in cs.CV

Abstract: Currently, most crowd counting methods have outstanding performance under normal weather conditions. However, our experimental validation reveals two key obstacles limiting the accuracy improvement of crowd counting models: 1) the domain gap between the adverse weather and the normal weather images; 2) the weather class imbalance in the training set. To address the problems, we propose a two-stage crowd counting method named Multi-queue Contrastive Learning (MQCL). Specifically, in the first stage, our target is to equip the backbone network with weather-awareness capabilities. In this process, a contrastive learning method named multi-queue MoCo designed by us is employed to enable representation learning under weather class imbalance. After the first stage is completed, the backbone model is "mature" enough to extract weather-related representations. On this basis, we proceed to the second stage, in which we propose to refine the representations under the guidance of contrastive learning, enabling the conversion of the weather-aware representations to the normal weather domain. Through such representation and conversion, the model achieves robust counting performance under both normal and adverse weather conditions. Extensive experimental results show that, compared to the baseline, MQCL reduces the counting error under adverse weather conditions by 22%, while introducing only about 13% increase in computational burden, which achieves state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.