Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gromov's Approximating Tree and the All-Pairs Bottleneck Paths Problem (2408.05338v1)

Published 9 Aug 2024 in cs.CG, cs.CC, cs.DM, math.CO, and math.OC

Abstract: Given a pointed metric space $(X,\mathsf{dist}, w)$ on $n$ points, its Gromov's approximating tree is a 0-hyperbolic pseudo-metric space $(X,\mathsf{dist}_T)$ such that $\mathsf{dist}(x,w)=\mathsf{dist}_T(x,w)$ and $\mathsf{dist}(x, y)-2 \delta \log_2n \leq \mathsf{dist}_T (x, y) \leq \mathsf{dist}(x, y)$ for all $x, y \in X$ where $\delta$ is the Gromov hyperbolicity of $X$. On the other hand, the all pairs bottleneck paths (APBP) problem asks, given an undirected graph with some capacities on its edges, to find the maximal path capacity between each pair of vertices. In this note, we prove: $\bullet$ Computing Gromov's approximating tree for a metric space with $n+1$ points from its matrix of distances reduces to solving the APBP problem on an connected graph with $n$ vertices. $\bullet$ There is an explicit algorithm that computes Gromov's approximating tree for a graph from its adjacency matrix in quadratic time. $\bullet$ Solving the APBP problem on a weighted graph with $n$ vertices reduces to finding Gromov's approximating tree for a metric space with $n+1$ points from its distance matrix.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com