Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Hypergraph Learning: Hyperedge Completion with Local Differential Privacy (2408.05160v2)

Published 9 Aug 2024 in cs.LG

Abstract: As the volume and complexity increase, graph-structured data commonly need to be split and stored across distributed systems. To enable data mining on subgraphs within these distributed systems, federated graph learning has been proposed, allowing collaborative training of Graph Neural Networks (GNNs) across clients without sharing raw node features. However, when dealing with graph structures that involve high-order relationships between nodes, known as hypergraphs, existing federated graph learning methods are less effective. In this study, we introduce FedHGL, an innovative federated hypergraph learning algorithm. FedHGL is designed to collaboratively train a comprehensive hypergraph neural network across multiple clients, facilitating mining tasks on subgraphs of a hypergraph where relationships are not merely pairwise. To address the high-order information loss between subgraphs caused by distributed storage, we introduce a pre-propagation hyperedge completion operation before the federated training process. In this pre-propagation step, cross-client feature aggregation is performed and distributed at the central server to ensure that this information can be utilized by the clients. Furthermore, by incorporating local differential privacy (LDP) mechanisms, we ensure that the original node features are not disclosed during this aggregation process. Experimental results on seven real-world datasets confirm the effectiveness of our approach and demonstrate its performance advantages over traditional federated graph learning methods.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets