Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auslander algebras, flag combinatorics and quantum flag varieties (2408.04753v1)

Published 8 Aug 2024 in math.RT and math.QA

Abstract: Let $D$ be the Auslander algebra of $\mathbb{C}[t]/(tn)$, which is quasi-hereditary, and $\mathcal{F}\Delta$ the subcategory of good $D$-modules. For any $\mathsf{J}\subseteq[1, n-1]$, we construct a subcategory $\mathcal{F}\Delta(\mathsf{J})$ of $\mathcal{F}\Delta$ with an exact structure $\mathcal{E}$. We show that under $\mathcal{E}$, $\mathcal{F}\Delta(\mathsf{J})$ is Frobenius stably 2-Calabi-Yau and admits a cluster structure consisting of cluster tilting objects. This then leads to an additive categorification of the cluster structure on the coordinate ring $\mathbb{C}[\operatorname{Fl}(\mathsf{J})]$ of the (partial) flag variety $\operatorname{Fl}(\mathsf{J})$. We further apply $\mathcal{F}\Delta(\mathsf{J})$ to study flag combinatorics and the quantum cluster structure on the flag variety $\operatorname{Fl}(\mathsf{J})$. We show that weak and strong separation can be detected by the extension groups $\operatorname{ext}1(-, -)$ under $\mathcal{E}$ and the extension groups $\operatorname{Ext}1(-,-)$, respectively. We give a interpretation of the quasi-commutation rules of quantum minors and identify when the product of two quantum minors is invariant under the bar involution. The combinatorial operations of flips and geometric exchanges correspond to certain mutations of cluster tilting objects in $\mathcal{F}\Delta(\mathsf{J})$. We then deduce that any (quantum) minor is reachable, when $\mathsf{J}$ is an interval. Building on our result for the interval case, Geiss-Leclerc-Schr\"{o}er's result on the quantum coordinate ring for the open cell of $\operatorname{Fl}(\mathsf{J})$ and Kang-Kashiwara-Kim-Oh's enhancement of that to the integral form, we prove that $\mathbb{C}_q[\operatorname{Fl}(\mathsf{J})]$ is a quantum cluster algebra over $\mathbb{C}[q,q{-1}]$.

Summary

We haven't generated a summary for this paper yet.