Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A transference principle for involution-invariant functional Hilbert spaces (2408.04384v2)

Published 8 Aug 2024 in math.CV and math.FA

Abstract: Let $\sigma : \mathbb Cd \rightarrow \mathbb Cd$ be an affine-linear involution such that $J_\sigma = -1$ and let $U, V$ be two domains in $\mathbb Cd.$ Let $\phi : U \rightarrow V$ be a $\sigma$-invariant $2$-proper map such that $J_\phi$ is affine-linear and let $\mathscr H(U)$ be a $\sigma$-invariant reproducing kernel Hilbert space of complex-valued holomorphic functions on $U.$ It is shown that the space $\mathscr H_\phi(V):={f \in \mathrm{Hol}(V) : J_\phi \cdot f \circ \phi \in \mathscr H(U)}$ endowed with the norm $|f|\phi :=|J\phi \cdot f \circ \phi|{\mathscr H(U)}$ is a reproducing kernel Hilbert space and the linear mapping $\varGamma\phi$ defined by $ \varGamma_\phi(f) = J_\phi \cdot f \circ \phi,$ $f \in \mathrm{Hol}(V),$ is a unitary from $\mathscr H_\phi(V)$ onto ${f \in \mathscr H(U) : f = -f \circ \sigma}.$ Moreover, a neat formula for the reproducing kernel $\kappa_{\phi}$ of $\mathscr H_\phi(V)$ in terms of the reproducing kernel of $\mathscr H(U)$ is given. The above scheme is applicable to symmetrized bidisc, tetrablock, $d$-dimensional fat Hartogs triangle and $d$-dimensional egg domain. Although some of these are known, this allows us to obtain an analog of von Neumann's inequality for contractive tuples naturally associated with these domains.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com