Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DistTrain: Addressing Model and Data Heterogeneity with Disaggregated Training for Multimodal Large Language Models (2408.04275v2)

Published 8 Aug 2024 in cs.DC

Abstract: Multimodal LLMs have demonstrated significant potential in a wide range of AI applications. Yet, training multimodal LLMs suffers from low efficiency and scalability, due to the inherent model heterogeneity and data heterogeneity across different modalities. We present DistTrain, an efficient and adaptive framework to reform the training of multimodal LLMs on large-scale clusters. The core of DistTrain is the disaggregated training technique that exploits the characteristics of multimodal LLM training to achieve high efficiency and scalability. Specifically, it leverages disaggregated model orchestration and disaggregated data reordering to address model and data heterogeneity respectively. We also tailor system optimization for multimodal LLM training to overlap GPU communication and computation. We evaluate DistTrain across different sizes of multimodal LLMs on a large-scale production cluster with thousands of GPUs. The experimental results show that DistTrain achieves 54.7% Model FLOPs Utilization (MFU) when training a 72B multimodal LLM on 1172 GPUs and outperforms Megatron-LM by up to 2.2$\times$ on throughput. The ablation study shows the main techniques of DistTrain are both effective and lightweight.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Zili Zhang (25 papers)
  2. Yinmin Zhong (11 papers)
  3. Ranchen Ming (7 papers)
  4. Hanpeng Hu (10 papers)
  5. Jianjian Sun (23 papers)
  6. Zheng Ge (60 papers)
  7. Yibo Zhu (31 papers)
  8. Xin Jin (285 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com