Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial similarity of pairs of matrices (2408.04244v1)

Published 8 Aug 2024 in math.RT

Abstract: Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\mathcal{M}(K)$ the set of all pairs of square matrices of the same size over $K.$ Pairs $P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\mathcal{M}(K)$ are called similar if $A_2=X{-1}A_1X$ and $B_2=X{-1}B_1X$ for some invertible matrix $X$ over $K$. Denote by $\mathcal{N}(K)$ the subset of $\mathcal{M}(K)$, consisting of all pairs of commuting nilpotent matrices. A pair $P$ will be called {\it polynomially equivalent} to a pair $\overline{P}=(\overline{A}, \overline{B})$ if $\overline{A}=f(A,B), \overline{B}=g(A ,B)$ for some polynomials $f, g\in K[x,y]$ satisfying the next conditions: $f(0,0)=0, g(0,0)=0$ and $ {\rm det} J(f, g)(0, 0)\not =0,$ where $J(f, g)$ is the Jacobi matrix of polynomials $f(x, y)$ and $g(x, y).$ Further, pairs of matrices $P(A,B)$ and $\widetilde{P}(\widetilde{A}, \widetilde{B})$ from $\mathcal{N}(K)$ will be called {\it polynomially similar} if there exists a pair $\overline{P}(\overline{A}, \overline{B})$ from $\mathcal{N}(K)$ such that $P$, $\overline{P}$ are polynomially equivalent and $\overline{P}$, $\widetilde{P}$ are similar. The main result of the paper: it is proved that the problem of classifying pairs of matrices up to polynomial similarity is wild, i.e. it contains the classical unsolvable problem of classifying pairs of matrices up to similarity.

Summary

We haven't generated a summary for this paper yet.