CAS-ViT: Convolutional Additive Self-attention Vision Transformers for Efficient Mobile Applications (2408.03703v2)
Abstract: Vision Transformers (ViTs) mark a revolutionary advance in neural networks with their token mixer's powerful global context capability. However, the pairwise token affinity and complex matrix operations limit its deployment on resource-constrained scenarios and real-time applications, such as mobile devices, although considerable efforts have been made in previous works. In this paper, we introduce CAS-ViT: Convolutional Additive Self-attention Vision Transformers, to achieve a balance between efficiency and performance in mobile applications. Firstly, we argue that the capability of token mixers to obtain global contextual information hinges on multiple information interactions, such as spatial and channel domains. Subsequently, we propose Convolutional Additive Token Mixer (CATM) employing underlying spatial and channel attention as novel interaction forms. This module eliminates troublesome complex operations such as matrix multiplication and Softmax. We introduce Convolutional Additive Self-attention(CAS) block hybrid architecture and utilize CATM for each block. And further, we build a family of lightweight networks, which can be easily extended to various downstream tasks. Finally, we evaluate CAS-ViT across a variety of vision tasks, including image classification, object detection, instance segmentation, and semantic segmentation. Our M and T model achieves 83.0\%/84.1\% top-1 with only 12M/21M parameters on ImageNet-1K. Meanwhile, throughput evaluations on GPUs, ONNX, and iPhones also demonstrate superior results compared to other state-of-the-art backbones. Extensive experiments demonstrate that our approach achieves a better balance of performance, efficient inference and easy-to-deploy. Our code and model are available at: \url{https://github.com/Tianfang-Zhang/CAS-ViT}
Collections
Sign up for free to add this paper to one or more collections.