Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Asymmetric Causality Tests (2408.03137v4)

Published 6 Aug 2024 in econ.EM and q-fin.ST

Abstract: Asymmetric causality tests are increasingly gaining popularity in different scientific fields. This approach corresponds better to reality since logical reasons behind asymmetric behavior exist and need to be considered in empirical investigations. Hatemi-J (2012) introduced the asymmetric causality tests via partial cumulative sums for positive and negative components of the variables operating within the vector autoregressive (VAR) model. However, since the residuals across the equations in the VAR model are not independent, the ordinary least squares method for estimating the parameters is not efficient. Additionally, asymmetric causality tests mean having different causal parameters (i.e., for positive or negative components), thus, it is crucial to assess not only if these causal parameters are individually statistically significant, but also if their difference is statistically significant. Consequently, tests of difference between estimated causal parameters should explicitly be conducted, which are neglected in the existing literature. The purpose of the current paper is to deal with these issues explicitly. An application is provided, and ten different hypotheses pertinent to the asymmetric causal interaction between two largest financial markets worldwide are efficiently tested within a multivariate setting.

Summary

We haven't generated a summary for this paper yet.