Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics of many-body localized systems: logarithmic lightcones and $\log \, t$-law of $α$-Rényi entropies (2408.02016v1)

Published 4 Aug 2024 in cond-mat.dis-nn, cond-mat.mes-hall, math-ph, math.MP, and quant-ph

Abstract: In the context of the Many-Body-Localization phenomenology we consider arbitrarily large one-dimensional spin systems. The XXZ model with disorder is a prototypical example. Without assuming the existence of exponentially localized integrals of motion (LIOMs), but assuming instead a logarithmic lightcone we rigorously evaluate the dynamical generation of $ \alpha$-R\'enyi entropies, $ 0< \alpha<1 $ close to one, obtaining a $\log \, t$-law. Assuming the existence of LIOMs we prove that the Lieb-Robinson (L-R) bound of the system's dynamics has a logarithmic lightcone and show that the dynamical generation of the von Neumann entropy, from a generic initial product state, has for large times a $ \log \, t$-shape. L-R bounds, that quantify the dynamical spreading of local operators, may be easier to measure in experiments in comparison to global quantities such as entanglement.

Summary

We haven't generated a summary for this paper yet.