Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a fractional harmonic oscillator: existence and inexistence of solution, regularity and decay properties (2408.01756v1)

Published 3 Aug 2024 in math.AP

Abstract: Under simple hypotheses on the nonlinearity $f$, we consider the fractional harmonic operator problem \begin{equation}\label{abstr}\sqrt{-\Delta+|x|2}\,u=f(x,u)\ \ \textrm{in }\ \mathbb{R}N\end{equation} or, since we work in the extension setting $\mathbb{R}{N+1}_+$, $$\left{\begin{aligned} -\Delta v +|x|2v&=0, &&\mbox{in} \ \mathbb{R}{N+1}_+,\ -\displaystyle\frac{\partial v}{\partial x}(x,0)&=f(x,v(x,0)) &&\mbox{on} \ \mathbb{R}{N}\cong\partial \mathbb{R}{N+1}_+.\end{aligned}\right.$$ Defining the space $$\mathcal{H}(\mathbb{R}{N+1}_+)=\left{v\in H1(\mathbb{R}{N+1}_+): \iint_{\mathbb{R}{N+1}_+}\left[|\nabla v|2+|x|2v2\right]dx dy<\infty\right},$$ we prove that the embedding $$\mathcal{H}(\mathbb{R}{N+1}_+)\hookrightarrow L{q}(\mathbb{R}N)$$ is compact. We also obtain a Pohozaev-type identity for this problem, show that in the case $f(x,u)=|u|{p*-2}u$ the problem has no non-trivial solution, compare the extremal attached to this problem with the one of the space $H1(\mathbb{R}{N+1}_+)$, prove that the solution $u$ of our problem belongs to $Lp(\mathbb{R}N)$ for all $p\in [2,\infty]$ and satisfy the polynomial decay $|u(x)|\leq C/|x|$ for any $|x|>M$. Finally, we prove the existence of a solution to a superlinear critical problem in the case $f(x,u)=|u|{2*-2}u+\lambda |u|{q-1}$, $1<q<2*-1$.

Summary

We haven't generated a summary for this paper yet.