Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solid-State Oxide-Ion Synaptic Transistor for Neuromorphic Computing (2408.01469v1)

Published 1 Aug 2024 in cs.ET and physics.app-ph

Abstract: Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature. Microfabricated electrochemical synapses offer a promising approach by functioning as an analog programmable resistor based on deterministic ion-insertion mechanisms. Here, we developed an all-solid-state oxide-ion synaptic transistor employing $\text{Bi}2\text{V}{0.9}\text{Cu}{0.1}\text{O}{5.35}$ as a superior oxide-ion conductor electrolyte and $\text{La}\text{0.5}\text{Sr}\text{0.5}\text{F}\text{O}_\text{3-$\delta$}$ as a variable resistance channel able to efficiently operate at temperatures compatible with conventional electronics. Our transistor exhibits essential synaptic behaviors such as long- and short-term potentiation, paired-pulse facilitation, and post-tetanic potentiation, mimicking fundamental properties of biological neural networks. Key criteria for efficient neuromorphic computing are satisfied, including excellent linear and symmetric synaptic plasticity, low energy consumption per programming pulse, and high endurance with minimal cycle-to-cycle variation. Integrated into an artificial neural network (ANN) simulation for handwritten digit recognition, the presented synaptic transistor achieved a 96% accuracy on the MNIST dataset, illustrating the effective implementation of our device in ANNs. These findings demonstrate the potential of oxide-ion based synaptic transistors for effective implementation in analog neuromorphic computing based on iontronics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.