StyleRF-VolVis: Style Transfer of Neural Radiance Fields for Expressive Volume Visualization (2408.00150v1)
Abstract: In volume visualization, visualization synthesis has attracted much attention due to its ability to generate novel visualizations without following the conventional rendering pipeline. However, existing solutions based on generative adversarial networks often require many training images and take significant training time. Still, issues such as low quality, consistency, and flexibility persist. This paper introduces StyleRF-VolVis, an innovative style transfer framework for expressive volume visualization (VolVis) via neural radiance field (NeRF). The expressiveness of StyleRF-VolVis is upheld by its ability to accurately separate the underlying scene geometry (i.e., content) and color appearance (i.e., style), conveniently modify color, opacity, and lighting of the original rendering while maintaining visual content consistency across the views, and effectively transfer arbitrary styles from reference images to the reconstructed 3D scene. To achieve these, we design a base NeRF model for scene geometry extraction, a palette color network to classify regions of the radiance field for photorealistic editing, and an unrestricted color network to lift the color palette constraint via knowledge distillation for non-photorealistic editing. We demonstrate the superior quality, consistency, and flexibility of StyleRF-VolVis by experimenting with various volume rendering scenes and reference images and comparing StyleRF-VolVis against other image-based (AdaIN), video-based (ReReVST), and NeRF-based (ARF and SNeRF) style rendering solutions.
- Pexels - the best free stock photos, royalty free images & videos shared by creators. https://www.pexels.com/.
- WikiArt - visual art encyclopedia. https://www.wikiart.org/.
- Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields. In Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 5835–5844, 2021. doi: 10 . 1109/ICCV48922 . 2021 . 00580
- Mip-NeRF 360: Unbounded anti-aliased neural radiance fields. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5460–5469, 2022. doi: 10 . 1109/CVPR52688 . 2022 . 00539
- A generative model for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 25(4):1636–1650, 2019. doi: 10 . 1109/TVCG . 2018 . 2816059
- S. Bruckner and M. E. Gröller. Style transfer functions for illustrative volume rendering. Computer Graphics Forum, 26(3):715–724, 2007. doi: 10 . 1111/j . 1467-8659 . 2007 . 01095 . x
- Advances in 3D neural stylization: A survey. arXiv preprint arXiv:2311.18328, 2023. doi: 10 . 48550/arXiv . 2311 . 18328
- Stylizing 3D scene via implicit representation and hypernetwork. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 215–224, 2022. doi: 10 . 1109/WACV51458 . 2022 . 00029
- One is all: Bridging the gap between neural radiance fields architectures with progressive volume distillation. In Proceedings of AAAI Conference on Artificial Intelligence, pp. 597–605, 2023. doi: 10 . 1609/aaai . v37i1 . 25135
- Plenoxels: Radiance fields without neural networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5491–5500, 2022. doi: 10 . 1109/CVPR52688 . 2022 . 00542
- Image style transfer using convolutional neural networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2414–2423, 2016. doi: 10 . 1109/CVPR . 2016 . 265
- RecolorNeRF: Layer decomposed radiance fields for efficient color editing of 3D scenes. In Proceedings of ACM International Conference on Multimedia, pp. 8004–8015, 2023. doi: 10 . 1145/3581783 . 3611957
- NeRVI: Compressive neural representation of visualization images for communicating volume visualization results. Computers & Graphics, 116:216–227, 2023. doi: 10 . 1016/J . CAG . 2023 . 08 . 024
- J. Han and C. Wang. TSR-TVD: Temporal super-resolution for time-varying data analysis and visualization. IEEE Transactions on Visualization and Computer Graphics, 26(1):205–215, 2020. doi: 10 . 1109/TVCG . 2019 . 2934255
- J. Han and C. Wang. SSR-TVD: Spatial super-resolution for time-varying data analysis and visualization. IEEE Transactions on Visualization and Computer Graphics, 28(6):2445–2456, 2022. doi: 10 . 1109/TVCG . 2020 . 3032123
- J. Han and C. Wang. VCNet: A generative model for volume completion. Visual Informatics, 6(2):62–73, 2022. doi: 10 . 1016/J . VISINF . 2022 . 04 . 004
- J. Han and C. Wang. CoordNet: Data generation and visualization generation for time-varying volumes via a coordinate-based neural network. IEEE Transactions on Visualization and Computer Graphics, 29(12):4951–4963, 2023. doi: 10 . 1109/TVCG . 2022 . 3197203
- KD-INR: Time-varying volumetric data compression via knowledge distillation-based implicit neural representation. IEEE Transactions on Visualization and Computer Graphics, 2023. Accepted. doi: 10 . 1109/TVCG . 2023 . 3345373
- STNet: An end-to-end generative framework for synthesizing spatiotemporal super-resolution volumes. IEEE Transactions on Visualization and Computer Graphics, 28(1):270–280, 2022. doi: 10 . 1109/TVCG . 2021 . 3114815
- V2V: A deep learning approach to variable-to-variable selection and translation for multivariate time-varying data. IEEE Transactions on Visualization and Computer Graphics, 27(2):1290–1300, 2021. doi: 10 . 1109/TVCG . 2020 . 3030346
- InSituNet: Deep image synthesis for parameter space exploration of ensemble simulations. IEEE Transactions on Visualization and Computer Graphics, 26(1):23–33, 2020. doi: 10 . 1109/TVCG . 2019 . 2934312
- Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015. doi: 10 . 48550/arXiv . 1503 . 02531
- DNN-VolVis: Interactive volume visualization supported by deep neural network. In Proceedings of IEEE Pacific Visualization Symposium, pp. 282–291, 2019. doi: 10 . 1109/PACIFICVIS . 2019 . 00041
- Tri-MipRF: Tri-mip representation for efficient anti-aliasing neural radiance fields. In Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 19717–19726, 2023. doi: 10 . 1109/ICCV51070 . 2023 . 01811
- X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 1510–1519, 2017. doi: 10 . 1109/ICCV . 2017 . 167
- StylizedNeRF: Consistent 3D scene stylization as stylized NeRF via 2D-3D mutual learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18321–18331, 2022. doi: 10 . 1109/CVPR52688 . 2022 . 01780
- Neural style transfer: A review. IEEE Transactions on Visualization and Computer Graphics, 26(11):3365–3385, 2020. doi: 10 . 1109/TVCG . 2019 . 2921336
- Perceptual losses for real-time style transfer and super-resolution. In Proceedings of European Conference on Computer Vision, pp. 694–711, 2016. doi: 10 . 1007/978-3-319-46475-6_43
- 3D Gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):139:1–139:14, 2023. doi: 10 . 1145/3592433
- Segment anything. arXiv preprint arXiv:2304.02643, 2023. doi: 10 . 48550/arXiv . 2304 . 02643
- Neural neighbor style transfer. arXiv preprint arXiv:2203.13215, 2022. doi: 10 . 48550/arXiv . 2203 . 13215
- PaletteNeRF: Palette-based appearance editing of neural radiance fields. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20691–20700, 2023. doi: 10 . 1109/CVPR52729 . 2023 . 01982
- ICE-NeRF: Interactive color editing of NeRFs via decomposition-aware weight optimization. In Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 3468–3478, 2023. doi: 10 . 1109/ICCV51070 . 2023 . 00323
- StyleRF: Zero-shot 3D style transfer of neural radiance fields. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8338–8348, 2023. doi: 10 . 1109/CVPR52729 . 2023 . 00806
- Non-photorealistic volume rendering using stippling techniques. In Proceedings of IEEE Visualization Conference, pp. 211–218, 2002. doi: 10 . 1109/VISUAL . 2002 . 1183777
- FCNR: Fast compressive neural representation of visualization images. In Proceedings of IEEE VIS Conference (Short Papers), 2024. Accepted.
- Compressive neural representations of volumetric scalar fields. Computer Graphics Forum, 40(3):135–146, 2021. doi: 10 . 1111/CGF . 14295
- Face model compression by distilling knowledge from neurons. In Proceedings of AAAI Conference on Artificial Intelligence, pp. 3560–3566, 2016. doi: 10 . 1609/aaai . v30i1 . 10449
- NeRF: Representing scenes as neural radiance fields for view synthesis. In Proceedings of European Conference on Computer Vision, pp. 405–421, 2020. doi: 10 . 1007/978-3-030-58452-8_24
- Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):102:1–102:15, 2022. doi: 10 . 1145/3528223 . 3530127
- SNeRF: Stylized neural implicit representations for 3D scenes. ACM Transactions on Graphics, 41(4):142:1–142:11, 2022. doi: 10 . 1145/3528223 . 3530107
- K. Nichol and W. Kan. Painter by numbers - does every painter leave a fingerprint? https://kaggle.com/competitions/painter-by-numbers, 2016.
- S. Niklaus and F. Liu. Softmax splatting for video frame interpolation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5436–5445, 2020. doi: 10 . 1109/CVPR42600 . 2020 . 00548
- KiloNeRF: Speeding up neural radiance fields with thousands of tiny MLPs. In Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 14315–14325, 2021. doi: 10 . 1109/ICCV48922 . 2021 . 01407
- Artistic style transfer for videos. In Proceedings of German Conference on Pattern Recognition, pp. 26–36, 2016. doi: 10 . 1007/978-3-319-45886-1_3
- VDL-Surrogate: A view-dependent latent-based model for parameter space exploration of ensemble simulations. IEEE Transactions on Visualization and Computer Graphics, 29(1):820–830, 2023. doi: 10 . 1109/TVCG . 2022 . 3209413
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image regnition. In Proceedings of International Conference on Learning Representation, 2015.
- M. Stone. A Field Guide to Digital Color. AK Peters, 2003.
- Efficient palette-based decomposition and recoloring of images via RGBXY-space geometry. ACM Transactions on Graphics, 37(6):262:1–262:10, 2018. doi: 10 . 1145/3272127 . 3275054
- K. Tang and C. Wang. ECNR: Efficient compressive neural representation of time-varying volumetric datasets. In Proceedings of IEEE Pacific Visualization Conference, pp. 72–81, 2024. doi: 10 . 1109/PACIFICVIS60374 . 2024 . 00017
- K. Tang and C. Wang. STSR-INR: Spatiotemporal super-resolution for time-varying multivariate volumetric data via implicit neural representation. Computers & Graphics, 119:103874, 2024. doi: 10 . 1016/J . CAG . 2024 . 01 . 001
- Z. Teed and J. Deng. RAFT: Recurrent all-pairs field transforms for optical flow. In Proceedings of European Conference on Computer Vision, pp. 402–419, 2020. doi: 10 . 1007/978-3-030-58536-5_24
- Advances in neural rendering. Computer Graphics Forum, 41(2):703–735, 2022. doi: 10 . 1111/cgf . 14507
- K. Tojo and N. Umetani. Recolorable posterization of volumetric radiance fields using visibility-weighted palette extraction. Computer Graphics Forum, 41(4):149–160, 2022. doi: 10 . 1111/cgf . 14594
- C. Wang and J. Han. DL4SciVis: A state-of-the-art survey on deep learning for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 29(8):3714–3733, 2023. doi: 10 . 1109/TVCG . 2022 . 3167896
- R2L: Distilling neural radiance field to neural light field for efficient novel view synthesis. In Proceedings of European Conference on Computer Vision, pp. 612–629, 2022. doi: 10 . 1007/978-3-031-19821-2_35
- Consistent video style transfer via relaxation and regularization. IEEE Transactions on Image Processing, 29:9125–9139, 2020. doi: 10 . 1109/TIP . 2020 . 3024018
- Volumetric isosurface rendering with deep learning-based super-resolution. IEEE Transactions on Visualization and Computer Graphics, 27(6):3064–3078, 2021. doi: 10 . 1109/TVCG . 2019 . 2956697
- Fast neural representations for direct volume rendering. Computer Graphics Forum, 41(6):196–211, 2022. doi: 10 . 1111/cgf . 14578
- Interactive volume visualization via multi-resolution hash encoding based neural representation. IEEE Transactions on Visualization and Computer Graphics, 2023. Accepted. doi: 10 . 1109/TVCG . 2023 . 3293121
- Adaptively placed multi-grid scene representation networks for large-scale data visualization. IEEE Transactions on Visualization and Computer Graphics, 30(1):965–974, 2024. doi: 10 . 1109/TVCG . 2023 . 3327194
- GMT: A deep learning approach to generalized multivariate translation for scientific data analysis and visualization. Computers & Graphics, 112:92–104, 2023. doi: 10 . 1016/J . CAG . 2023 . 04 . 002
- ARF: Artistic radiance fields. In Proceedings of European Conference on Computer Vision, pp. 717–733, 2022. doi: 10 . 1007/978-3-031-19821-2_41
- The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 586–595, 2018. doi: 10 . 1109/CVPR . 2018 . 00068