Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TRGR: Transmissive RIS-aided Gait Recognition Through Walls (2407.21566v1)

Published 31 Jul 2024 in cs.AI

Abstract: Gait recognition with radio frequency (RF) signals enables many potential applications requiring accurate identification. However, current systems require individuals to be within a line-of-sight (LOS) environment and struggle with low signal-to-noise ratio (SNR) when signals traverse concrete and thick walls. To address these challenges, we present TRGR, a novel transmissive reconfigurable intelligent surface (RIS)-aided gait recognition system. TRGR can recognize human identities through walls using only the magnitude measurements of channel state information (CSI) from a pair of transceivers. Specifically, by leveraging transmissive RIS alongside a configuration alternating optimization algorithm, TRGR enhances wall penetration and signal quality, enabling accurate gait recognition. Furthermore, a residual convolution network (RCNN) is proposed as the backbone network to learn robust human information. Experimental results confirm the efficacy of transmissive RIS, highlighting the significant potential of transmissive RIS in enhancing RF-based gait recognition systems. Extensive experiment results show that TRGR achieves an average accuracy of 97.88\% in identifying persons when signals traverse concrete walls, demonstrating the effectiveness and robustness of TRGR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. M. M. Ali, V. H. Mahale, P. Yannawar, and A. T. Gaikwad, “Overview of fingerprint recognition system,” in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 1334–1338.
  2. A. Mehmood, J. M. Sabatier, M. Bradley, and A. Ekimov, “Extraction of the velocity of walking human’s body segments using ultrasonic Doppler,” The Journal of the Acoustical Society of America, vol. 128, pp. EL316–EL322, 11 2010.
  3. F. Wang, M. Skubic, M. Rantz, and P. E. Cuddihy, “Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 9, pp. 2434–2443, 2014.
  4. T. Yardibi, P. Cuddihy, S. Genc, C. Bufi, M. Skubic, M. Rantz, L. Liu, and C. Phillips, “Gait characterization via pulse-Doppler radar,” in 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2011, pp. 662–667.
  5. W. Wang, A. X. Liu, and M. Shahzad, “Gait recognition using wifi signals,” in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 363–373.
  6. Y. Zeng, P. H. Pathak, and P. Mohapatra, “WiWho: WiFi-Based Person Identification in Smart Spaces,” in 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 2016, pp. 1–12.
  7. J. Zhang, B. Wei, W. Hu, and S. S. Kanhere, “WiFi-ID: Human Identification Using WiFi Signal,” in 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS), 2016, pp. 75–82.
  8. J. Tang, M. Cui, S. Xu, L. Dai, F. Yang, and M. Li, “Transmissive RIS for B5G Communications: Design, Prototyping, and Experimental Demonstrations,” IEEE Transactions on Communications, vol. 71, no. 11, pp. 6605–6615, 2023.
  9. J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-Free Occupant Activity Sensing Using WiFi-Enabled IoT Devices for Smart Homes,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3991–4002, 2018.
  10. X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and E. Björnson, “Ris-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8627–8640, 2021.
  11. M. Ettus and M. Braun, “The Universal Software Radio Peripheral (USRP) Family of Low-Cost SDRs,” Opportunistic spectrum sharing and white space access: The practical reality, pp. 3–23, 2015.
  12. J. Kodosky, “LabVIEW,” Proceedings of the ACM on Programming Languages, vol. 4, 6 2020.
  13. E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive Moving Average Graph Filtering,” IEEE Transactions on Signal Processing, vol. 65, no. 2, pp. 274–288, 2017.
  14. S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” in Proceedings of the 32nd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37.   PMLR, 07–09 Jul 2015, pp. 448–456.
  15. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  16. Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features for recognition,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 2559–2566.
  17. E. Shalaby, N. ElShennawy, and A. Sarhan, “Utilizing deep learning models in CSI-based human activity recognition,” Neural Computing and Applications, vol. 34, pp. 5993–6010, 4 2022.
  18. S. Shang, Q. Luo, J. Zhao, R. Xue, W. Sun, and N. Bao, “LSTM-CNN network for human activity recognition using WiFi CSI data,” Journal of Physics: Conference Series, vol. 1883, no. 1, p. 012139, apr 2021.
  19. L. Deng, J. Yang, S. Yuan, H. Zou, C. X. Lu, and L. Xie, “GaitFi: Robust Device-Free Human Identification via WiFi and Vision Multimodal Learning,” IEEE Internet of Things Journal, vol. 10, no. 1, pp. 625–636, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets