Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EUDA: An Efficient Unsupervised Domain Adaptation via Self-Supervised Vision Transformer (2407.21311v1)

Published 31 Jul 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Unsupervised domain adaptation (UDA) aims to mitigate the domain shift issue, where the distribution of training (source) data differs from that of testing (target) data. Many models have been developed to tackle this problem, and recently vision transformers (ViTs) have shown promising results. However, the complexity and large number of trainable parameters of ViTs restrict their deployment in practical applications. This underscores the need for an efficient model that not only reduces trainable parameters but also allows for adjustable complexity based on specific needs while delivering comparable performance. To achieve this, in this paper we introduce an Efficient Unsupervised Domain Adaptation (EUDA) framework. EUDA employs the DINOv2, which is a self-supervised ViT, as a feature extractor followed by a simplified bottleneck of fully connected layers to refine features for enhanced domain adaptation. Additionally, EUDA employs the synergistic domain alignment loss (SDAL), which integrates cross-entropy (CE) and maximum mean discrepancy (MMD) losses, to balance adaptation by minimizing classification errors in the source domain while aligning the source and target domain distributions. The experimental results indicate the effectiveness of EUDA in producing comparable results as compared with other state-of-the-art methods in domain adaptation with significantly fewer trainable parameters, between 42% to 99.7% fewer. This showcases the ability to train the model in a resource-limited environment. The code of the model is available at: https://github.com/A-Abedi/EUDA.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol. 312, pp. 135–153, Oct. 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231218306684
  2. Z. Han, H. Sun, and Y. Yin, “Learning Transferable Parameters for Unsupervised Domain Adaptation,” IEEE Transactions on Image Processing, vol. 31, pp. 6424–6439, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9807644/
  3. J. Li, R. Xu, J. Ma, Q. Zou, J. Ma, and H. Yu, “Domain Adaptive Object Detection for Autonomous Driving Under Foggy Weather,” 2023, pp. 612–622. [Online]. Available: https://openaccess.thecvf.com/content/WACV2023/html/Li_Domain_Adaptive_Object_Detection_for_Autonomous_Driving_Under_Foggy_Weather_WACV_2023_paper.html
  4. Y. Ganin and V. Lempitsky, “Unsupervised Domain Adaptation by Backpropagation,” Feb. 2015, arXiv:1409.7495 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1409.7495
  5. E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial Discriminative Domain Adaptation,” 2017, pp. 7167–7176. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2017/html/Tzeng_Adversarial_Discriminative_Domain_CVPR_2017_paper.html
  6. Z. Cao, M. Long, J. Wang, and M. I. Jordan, “Partial Transfer Learning With Selective Adversarial Networks,” 2018, pp. 2724–2732. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2018/html/Cao_Partial_Transfer_Learning_CVPR_2018_paper
  7. M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi, “Domain Generalization for Object Recognition With Multi-Task Autoencoders,” 2015, pp. 2551–2559. [Online]. Available: https://openaccess.thecvf.com/content_iccv_2015/html/Ghifary_Domain_Generalization_for_ICCV_2015_paper
  8. K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, “Domain Separation Networks,” in Advances in Neural Information Processing Systems, vol. 29.   Curran Associates, Inc., 2016. [Online]. Available: https://papers.nips.cc/paper_files/paper/2016/hash/45fbc6d3e05ebd93369ce542e8f2322d-Abstract.html
  9. T. Alkhalifah and O. Ovcharenko, “Direct domain adaptation through reciprocal linear transformations,” Aug. 2021, arXiv:2108.07600 [cs]. [Online]. Available: http://arxiv.org/abs/2108.07600
  10. A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A Kernel Method for the Two-Sample-Problem,” in Advances in Neural Information Processing Systems, vol. 19.   MIT Press, 2006. [Online]. Available: https://papers.nips.cc/paper_files/paper/2006/hash/e9fb2eda3d9c55a0d89c98d6c54b5b3e-Abstract.html
  11. M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning Transferable Features with Deep Adaptation Networks,” May 2015, arXiv:1502.02791 [cs]. [Online]. Available: http://arxiv.org/abs/1502.02791
  12. H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo, “Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation,” 2017, pp. 2272–2281. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2017/html/Yan_Mind_the_Class_CVPR_2017_paper
  13. B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, ser. AAAI’16.   Phoenix, Arizona: AAAI Press, Feb. 2016, pp. 2058–2065.
  14. B. Sun and K. Saenko, “Deep CORAL: Correlation Alignment for Deep Domain Adaptation,” in Computer Vision - ECCV 2016 Workshops, G. Hua and H. Jegou, Eds.   Cham: Springer International Publishing, 2016, vol. 9915, pp. 443–450, series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-319-49409-8_35
  15. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” Jun. 2021, arXiv:2010.11929 [cs]. [Online]. Available: http://arxiv.org/abs/2010.11929
  16. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems, vol. 30.   Curran Associates, Inc., 2017. [Online]. Available: https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
  17. J. Maurício, I. Domingues, and J. Bernardino, “Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review,” Applied Sciences, vol. 13, no. 9, p. 5521, Apr. 2023. [Online]. Available: https://www.mdpi.com/2076-3417/13/9/5521
  18. J. Yang, J. Liu, N. Xu, and J. Huang, “TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation,” Nov. 2021, arXiv:2108.05988 [cs]. [Online]. Available: http://arxiv.org/abs/2108.05988
  19. T. Xu, W. Chen, P. Wang, F. Wang, H. Li, and R. Jin, “CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation,” Mar. 2022, arXiv:2109.06165 [cs]. [Online]. Available: http://arxiv.org/abs/2109.06165
  20. J. Zhu, H. Bai, and L. Wang, “Patch-Mix Transformer for Unsupervised Domain Adaptation: A Game Perspective,” 2023, pp. 3561–3571. [Online]. Available: https://openaccess.thecvf.com/content/CVPR2023/html/Zhu_Patch-Mix_Transformer_for_Unsupervised_Domain_Adaptation_A_Game_Perspective_CVPR_2023_paper.html
  21. M. B. Sariyildiz, Y. Kalantidis, D. Larlus, and K. Alahari, “Concept Generalization in Visual Representation Learning,” Sep. 2021, arXiv:2012.05649 [cs]. [Online]. Available: http://arxiv.org/abs/2012.05649
  22. K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, Z. Yang, Y. Zhang, and D. Tao, “A Survey on Vision Transformer,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 87–110, Jan. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9716741/
  23. M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski, “DINOv2: Learning Robust Visual Features without Supervision,” Feb. 2024, arXiv:2304.07193 [cs]. [Online]. Available: http://arxiv.org/abs/2304.07193
  24. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum Contrast for Unsupervised Visual Representation Learning,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   Seattle, WA, USA: IEEE, Jun. 2020, pp. 9726–9735. [Online]. Available: https://ieeexplore.ieee.org/document/9157636/
  25. M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging Properties in Self-Supervised Vision Transformers,” 2021, pp. 9650–9660. [Online]. Available: https://openaccess.thecvf.com/content/ICCV2021/html/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.html
  26. A. Ajith and G. Gopakumar, “Domain Adaptation: A Survey,” in Computer Vision and Machine Intelligence, M. Tistarelli, S. R. Dubey, S. K. Singh, and X. Jiang, Eds.   Singapore: Springer Nature Singapore, 2023, vol. 586, pp. 591–602, series Title: Lecture Notes in Networks and Systems. [Online]. Available: https://link.springer.com/10.1007/978-981-19-7867-8_47
  27. M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning with joint adaptation networks,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70, ser. ICML’17.   JMLR.org, 2017, pp. 2208–2217, place: Sydney, NSW, Australia.
  28. W. Ma, J. Zhang, S. Li, C. H. Liu, Y. Wang, and W. Li, “Exploiting Both Domain-specific and Invariant Knowledge via a Win-win Transformer for Unsupervised Domain Adaptation,” Nov. 2021, arXiv:2111.12941 [cs]. [Online]. Available: http://arxiv.org/abs/2111.12941
  29. Z. Feng, C. Xu, and D. Tao, “Self-Supervised Representation Learning by Rotation Feature Decoupling,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   Long Beach, CA, USA: IEEE, Jun. 2019, pp. 10 356–10 366. [Online]. Available: https://ieeexplore.ieee.org/document/8953870/
  30. R. Zhang, P. Isola, and A. A. Efros, “Colorful Image Colorization,” Oct. 2016, arXiv:1603.08511 [cs] version: 5. [Online]. Available: http://arxiv.org/abs/1603.08511
  31. Y. Chen, X. Shen, Y. Liu, Q. Tao, and J. A. Suykens, “Jigsaw-ViT: Learning jigsaw puzzles in vision transformer,” Pattern Recognition Letters, vol. 166, pp. 53–60, Feb. 2023. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167865522003920
  32. C. Li, J. Yang, P. Zhang, M. Gao, B. Xiao, X. Dai, L. Yuan, and J. Gao, “Efficient Self-supervised Vision Transformers for Representation Learning,” Jul. 2022, arXiv:2106.09785 [cs]. [Online]. Available: http://arxiv.org/abs/2106.09785
  33. T. Darcet, M. Oquab, J. Mairal, and P. Bojanowski, “Vision Transformers Need Registers,” Apr. 2024, arXiv:2309.16588 [cs]. [Online]. Available: http://arxiv.org/abs/2309.16588
  34. H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep Hashing Network for Unsupervised Domain Adaptation,” 2017, pp. 5018–5027. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2017/html/Venkateswara_Deep_Hashing_Network_CVPR_2017_paper
  35. B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. R. G. Lanckriet, “Hilbert space embeddings and metrics on probability measures,” Jan. 2010, arXiv:0907.5309 [math, stat]. [Online]. Available: http://arxiv.org/abs/0907.5309
  36. D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting Visual Category Models to New Domains,” in Computer Vision - ECCV 2010, K. Daniilidis, P. Maragos, and N. Paragios, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6314, pp. 213–226, series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-642-15561-1_16
  37. X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko, “VisDA: The Visual Domain Adaptation Challenge,” Nov. 2017, arXiv:1710.06924 [cs]. [Online]. Available: http://arxiv.org/abs/1710.06924
  38. X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment Matching for Multi-Source Domain Adaptation,” 2019, pp. 1406–1415. [Online]. Available: https://openaccess.thecvf.com/content_ICCV_2019/html/Peng_Moment_Matching_for_Multi-Source_Domain_Adaptation_ICCV_2019_paper
  39. M. Long, Z. CAO, J. Wang, and M. I. Jordan, “Conditional Adversarial Domain Adaptation,” in Advances in Neural Information Processing Systems, vol. 31.   Curran Associates, Inc., 2018. [Online]. Available: https://papers.nips.cc/paper_files/paper/2018/hash/ab88b15733f543179858600245108dd8-Abstract.html
  40. H. Liu, M. Long, J. Wang, and M. Jordan, “Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers,” in Proceedings of the 36th International Conference on Machine Learning.   PMLR, May 2019, pp. 4013–4022, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v97/liu19b.html
  41. J. Liang, D. Hu, and J. Feng, “Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation,” Jun. 2021, arXiv:2002.08546 [cs]. [Online]. Available: http://arxiv.org/abs/2002.08546
  42. S. Cui, S. Wang, J. Zhuo, L. Li, Q. Huang, and Q. Tian, “Towards Discriminability and Diversity: Batch Nuclear-Norm Maximization Under Label Insufficient Situations,” 2020, pp. 3941–3950. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2020/html/Cui_Towards_Discriminability_and_Diversity_Batch_Nuclear-Norm_Maximization_Under_Label_Insufficient_CVPR_2020_paper.html
  43. K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum Classifier Discrepancy for Unsupervised Domain Adaptation,” 2018, pp. 3723–3732. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2018/html/Saito_Maximum_Classifier_Discrepancy_CVPR_2018_paper.html
  44. C.-Y. Lee, T. Batra, M. H. Baig, and D. Ulbricht, “Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation,” 2019, pp. 10 285–10 295. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2019/html/Lee_Sliced_Wasserstein_Discrepancy_for_Unsupervised_Domain_Adaptation_CVPR_2019_paper.html
  45. S. Lee, D. Kim, N. Kim, and S.-G. Jeong, “Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation,” 2019, pp. 91–100. [Online]. Available: https://openaccess.thecvf.com/content_ICCV_2019/html/Lee_Drop_to_Adapt_Learning_Discriminative_Features_for_Unsupervised_Domain_Adaptation_ICCV_2019_paper.html
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ali Abedi (45 papers)
  2. Q. M. Jonathan Wu (22 papers)
  3. Ning Zhang (278 papers)
  4. Farhad Pourpanah (14 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com