Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-grained Metrics for Point Cloud Semantic Segmentation (2407.21289v1)

Published 31 Jul 2024 in cs.CV and cs.GR

Abstract: Two forms of imbalances are commonly observed in point cloud semantic segmentation datasets: (1) category imbalances, where certain objects are more prevalent than others; and (2) size imbalances, where certain objects occupy more points than others. Because of this, the majority of categories and large objects are favored in the existing evaluation metrics. This paper suggests fine-grained mIoU and mAcc for a more thorough assessment of point cloud segmentation algorithms in order to address these issues. Richer statistical information is provided for models and datasets by these fine-grained metrics, which also lessen the bias of current semantic segmentation metrics towards large objects. The proposed metrics are used to train and assess various semantic segmentation algorithms on three distinct indoor and outdoor semantic segmentation datasets.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com