Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

DeepBaR: Fault Backdoor Attack on Deep Neural Network Layers (2407.21220v1)

Published 30 Jul 2024 in cs.LG, cs.CR, and cs.CV

Abstract: Machine Learning using neural networks has received prominent attention recently because of its success in solving a wide variety of computational tasks, in particular in the field of computer vision. However, several works have drawn attention to potential security risks involved with the training and implementation of such networks. In this work, we introduce DeepBaR, a novel approach that implants backdoors on neural networks by faulting their behavior at training, especially during fine-tuning. Our technique aims to generate adversarial samples by optimizing a custom loss function that mimics the implanted backdoors while adding an almost non-visible trigger in the image. We attack three popular convolutional neural network architectures and show that DeepBaR attacks have a success rate of up to 98.30\%. Furthermore, DeepBaR does not significantly affect the accuracy of the attacked networks after deployment when non-malicious inputs are given. Remarkably, DeepBaR allows attackers to choose an input that looks similar to a given class, from a human perspective, but that will be classified as belonging to an arbitrary target class.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com