Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach (2407.20732v2)
Abstract: Representing diverse and plausible future trajectories is critical for motion forecasting in autonomous driving. However, efficiently capturing these trajectories in a compact set remains challenging. This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts, such as intersections and straight roads, by leveraging map information and actor dynamics. A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility by condensing redundant representations. Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance (DAC) compared to baseline methods while maintaining competitive displacement errors. Our work highlights the benefits of mining such scene-aware trajectory sets and how they could capture the complex and heterogeneous nature of actor behavior in real-world driving scenarios.
- H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai, C. Schmid, C. Li, and D. Anguelov, “TNT: Target-driven Trajectory Prediction,” in Proceedings of the 2020 Conference on Robot Learning. PMLR, Oct. 2021, pp. 895–904, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v155/zhao21b.html
- “Unacceptably Risky - Part 1 - Safety Report on Cruise’s Crash,” Nov. 2022. [Online]. Available: https://www.retrospectav.com/blog/unacceptably-risky-part-1-safety-report-on-cruises-crash
- T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff, “CoverNet: Multimodal Behavior Prediction using Trajectory Sets,” Apr. 2020, arXiv:1911.10298 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1911.10298
- Y. Biktairov, M. Stebelev, I. Rudenko, O. Shliazhko, and B. Yangel, “PRANK: motion Prediction based on RANKing,” in Advances in Neural Information Processing Systems, vol. 33. Curran Associates, Inc., 2020, pp. 2553–2563. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/hash/1b0251ccb8bd5f9ccf444e4bda7713e3-Abstract.html
- A. Vivekanandan, A. Abouelazm, P. Schörner, and J. M. Zöllner, “KI-PMF: Knowledge Integrated Plausible Motion Forecasting,” Oct. 2023, arXiv:2310.12007 [cs]. [Online]. Available: http://arxiv.org/abs/2310.12007
- C. J. Green and A. Kelly, “Toward Optimal Sampling in the Space of Paths,” in Robotics Research, B. Siciliano, O. Khatib, F. Groen, M. Kaneko, and Y. Nakamura, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 66, pp. 281–292, series Title: Springer Tracts in Advanced Robotics. [Online]. Available: http://link.springer.com/10.1007/978-3-642-14743-2_24
- H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schneider, and N. Djuric, “Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks,” in 2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE, May 2019, pp. 2090–2096. [Online]. Available: https://ieeexplore.ieee.org/document/8793868/
- B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov, and B. Sapp, “MultiPath++: Efficient Information Fusion and Trajectory Aggregation for Behavior Prediction,” Dec. 2021, arXiv:2111.14973 [cs]. [Online]. Available: http://arxiv.org/abs/2111.14973
- M. Bahari, S. Saadatnejad, A. Rahimi, M. Shaverdikondori, A. H. Shahidzadeh, S.-M. Moosavi-Dezfooli, and A. Alahi, “Vehicle trajectory prediction works, but not everywhere,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE, Jun. 2022, pp. 17 102–17 112. [Online]. Available: https://ieeexplore.ieee.org/document/9878584/
- S. Casas, C. Gulino, S. Suo, and R. Urtasun, “The Importance of Prior Knowledge in Precise Multimodal Prediction,” Jun. 2020, arXiv:2006.02636 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2006.02636
- M. S. Branicky, R. A. Knepper, and J. J. Kuffner, “Path and trajectory diversity: Theory and algorithms,” in 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, May 2008, pp. 1359–1364. [Online]. Available: http://ieeexplore.ieee.org/document/4543392/
- J. Schmidt, P. Huissel, J. Wiederer, J. Jordan, V. Belagiannis, and K. Dietmayer, “RESET: Revisiting Trajectory Sets for Conditional Behavior Prediction,” Apr. 2023, arXiv:2304.05856 [cs]. [Online]. Available: http://arxiv.org/abs/2304.05856
- T. A. Catanach, “Computational Methods for Bayesian Inference in Complex Systems.”
- C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning requires rethinking generalization,” Feb. 2017, arXiv:1611.03530 [cs]. [Online]. Available: http://arxiv.org/abs/1611.03530
- M. Zipfl, M. Jarosch, and J. M. Zöllner, “Self Supervised Clustering of Traffic Scenes using Graph Representations,” Nov. 2022, arXiv:2211.15508 [cs]. [Online]. Available: http://arxiv.org/abs/2211.15508
- B. Schütt, S. Otten, and E. Sax, “Clustering-based Criticality Analysis for Testing of Automated Driving Systems,” Jul. 2023, arXiv:2306.12738 [cs]. [Online]. Available: http://arxiv.org/abs/2306.12738
- L. Westhofen, C. Neurohr, T. Koopmann, M. Butz, B. Schütt, F. Utesch, B. Neurohr, C. Gutenkunst, and E. Böde, “Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 1–35, Jan. 2023. [Online]. Available: https://doi.org/10.1007/s11831-022-09788-7
- J. Bernhard, M. Schutera, and E. Sax, “Optimizing test-set diversity: Trajectory clustering for scenario-based testing of automated driving systems,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Indianapolis, IN, USA: IEEE, Sep. 2021, pp. 1371–1378. [Online]. Available: https://ieeexplore.ieee.org/document/9564771/
- S. H. Park, G. Lee, M. Bhat, J. Seo, M. Kang, J. Francis, A. R. Jadhav, P. P. Liang, and L.-P. Morency, “Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding,” Aug. 2020, arXiv:2003.03212 [cs]. [Online]. Available: http://arxiv.org/abs/2003.03212
- B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays, “Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting.”
- J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation,” May 2020, arXiv:2005.04259 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2005.04259