Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach (2407.20732v2)

Published 30 Jul 2024 in cs.CV and cs.RO

Abstract: Representing diverse and plausible future trajectories is critical for motion forecasting in autonomous driving. However, efficiently capturing these trajectories in a compact set remains challenging. This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts, such as intersections and straight roads, by leveraging map information and actor dynamics. A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility by condensing redundant representations. Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance (DAC) compared to baseline methods while maintaining competitive displacement errors. Our work highlights the benefits of mining such scene-aware trajectory sets and how they could capture the complex and heterogeneous nature of actor behavior in real-world driving scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai, C. Schmid, C. Li, and D. Anguelov, “TNT: Target-driven Trajectory Prediction,” in Proceedings of the 2020 Conference on Robot Learning.   PMLR, Oct. 2021, pp. 895–904, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v155/zhao21b.html
  2. “Unacceptably Risky - Part 1 - Safety Report on Cruise’s Crash,” Nov. 2022. [Online]. Available: https://www.retrospectav.com/blog/unacceptably-risky-part-1-safety-report-on-cruises-crash
  3. T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff, “CoverNet: Multimodal Behavior Prediction using Trajectory Sets,” Apr. 2020, arXiv:1911.10298 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1911.10298
  4. Y. Biktairov, M. Stebelev, I. Rudenko, O. Shliazhko, and B. Yangel, “PRANK: motion Prediction based on RANKing,” in Advances in Neural Information Processing Systems, vol. 33.   Curran Associates, Inc., 2020, pp. 2553–2563. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/hash/1b0251ccb8bd5f9ccf444e4bda7713e3-Abstract.html
  5. A. Vivekanandan, A. Abouelazm, P. Schörner, and J. M. Zöllner, “KI-PMF: Knowledge Integrated Plausible Motion Forecasting,” Oct. 2023, arXiv:2310.12007 [cs]. [Online]. Available: http://arxiv.org/abs/2310.12007
  6. C. J. Green and A. Kelly, “Toward Optimal Sampling in the Space of Paths,” in Robotics Research, B. Siciliano, O. Khatib, F. Groen, M. Kaneko, and Y. Nakamura, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 66, pp. 281–292, series Title: Springer Tracts in Advanced Robotics. [Online]. Available: http://link.springer.com/10.1007/978-3-642-14743-2_24
  7. H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schneider, and N. Djuric, “Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks,” in 2019 International Conference on Robotics and Automation (ICRA).   Montreal, QC, Canada: IEEE, May 2019, pp. 2090–2096. [Online]. Available: https://ieeexplore.ieee.org/document/8793868/
  8. B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov, and B. Sapp, “MultiPath++: Efficient Information Fusion and Trajectory Aggregation for Behavior Prediction,” Dec. 2021, arXiv:2111.14973 [cs]. [Online]. Available: http://arxiv.org/abs/2111.14973
  9. M. Bahari, S. Saadatnejad, A. Rahimi, M. Shaverdikondori, A. H. Shahidzadeh, S.-M. Moosavi-Dezfooli, and A. Alahi, “Vehicle trajectory prediction works, but not everywhere,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   New Orleans, LA, USA: IEEE, Jun. 2022, pp. 17 102–17 112. [Online]. Available: https://ieeexplore.ieee.org/document/9878584/
  10. S. Casas, C. Gulino, S. Suo, and R. Urtasun, “The Importance of Prior Knowledge in Precise Multimodal Prediction,” Jun. 2020, arXiv:2006.02636 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2006.02636
  11. M. S. Branicky, R. A. Knepper, and J. J. Kuffner, “Path and trajectory diversity: Theory and algorithms,” in 2008 IEEE International Conference on Robotics and Automation.   Pasadena, CA, USA: IEEE, May 2008, pp. 1359–1364. [Online]. Available: http://ieeexplore.ieee.org/document/4543392/
  12. J. Schmidt, P. Huissel, J. Wiederer, J. Jordan, V. Belagiannis, and K. Dietmayer, “RESET: Revisiting Trajectory Sets for Conditional Behavior Prediction,” Apr. 2023, arXiv:2304.05856 [cs]. [Online]. Available: http://arxiv.org/abs/2304.05856
  13. T. A. Catanach, “Computational Methods for Bayesian Inference in Complex Systems.”
  14. C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning requires rethinking generalization,” Feb. 2017, arXiv:1611.03530 [cs]. [Online]. Available: http://arxiv.org/abs/1611.03530
  15. M. Zipfl, M. Jarosch, and J. M. Zöllner, “Self Supervised Clustering of Traffic Scenes using Graph Representations,” Nov. 2022, arXiv:2211.15508 [cs]. [Online]. Available: http://arxiv.org/abs/2211.15508
  16. B. Schütt, S. Otten, and E. Sax, “Clustering-based Criticality Analysis for Testing of Automated Driving Systems,” Jul. 2023, arXiv:2306.12738 [cs]. [Online]. Available: http://arxiv.org/abs/2306.12738
  17. L. Westhofen, C. Neurohr, T. Koopmann, M. Butz, B. Schütt, F. Utesch, B. Neurohr, C. Gutenkunst, and E. Böde, “Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 1–35, Jan. 2023. [Online]. Available: https://doi.org/10.1007/s11831-022-09788-7
  18. J. Bernhard, M. Schutera, and E. Sax, “Optimizing test-set diversity: Trajectory clustering for scenario-based testing of automated driving systems,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).   Indianapolis, IN, USA: IEEE, Sep. 2021, pp. 1371–1378. [Online]. Available: https://ieeexplore.ieee.org/document/9564771/
  19. S. H. Park, G. Lee, M. Bhat, J. Seo, M. Kang, J. Francis, A. R. Jadhav, P. P. Liang, and L.-P. Morency, “Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding,” Aug. 2020, arXiv:2003.03212 [cs]. [Online]. Available: http://arxiv.org/abs/2003.03212
  20. B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays, “Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting.”
  21. J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation,” May 2020, arXiv:2005.04259 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2005.04259

Summary

We haven't generated a summary for this paper yet.