Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Provably Satisfy High Relative Degree Constraints for Black-Box Systems (2407.20456v1)

Published 29 Jul 2024 in eess.SY and cs.SY

Abstract: In this paper, we develop a method for learning a control policy guaranteed to satisfy an affine state constraint of high relative degree in closed loop with a black-box system. Previous reinforcement learning (RL) approaches to satisfy safety constraints either require access to the system model, or assume control affine dynamics, or only discourage violations with reward shaping. Only recently have these issues been addressed with POLICEd RL, which guarantees constraint satisfaction for black-box systems. However, this previous work can only enforce constraints of relative degree 1. To address this gap, we build a novel RL algorithm explicitly designed to enforce an affine state constraint of high relative degree in closed loop with a black-box control system. Our key insight is to make the learned policy be affine around the unsafe set and to use this affine region to dissipate the inertia of the high relative degree constraint. We prove that such policies guarantee constraint satisfaction for deterministic systems while being agnostic to the choice of the RL training algorithm. Our results demonstrate the capacity of our approach to enforce hard constraints in the Gym inverted pendulum and on a space shuttle landing simulation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jean-Baptiste Bouvier (14 papers)
  2. Kartik Nagpal (6 papers)
  3. Negar Mehr (36 papers)

Summary

We haven't generated a summary for this paper yet.