Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Ellipsoids (2407.20362v2)

Published 29 Jul 2024 in math.OC, cs.NA, cs.SY, eess.SY, math.AG, and math.NA

Abstract: We introduce a family of symmetric convex bodies called generalized ellipsoids of degree $d$ (GE-$d$s), with ellipsoids corresponding to the case of $d=0$. Generalized ellipsoids (GEs) retain many geometric, algebraic, and algorithmic properties of ellipsoids. We show that the conditions that the parameters of a GE must satisfy can be checked in strongly polynomial time, and that one can search for GEs of a given degree by solving a semidefinite program whose size grows only linearly with dimension. We give an example of a GE which does not have a second-order cone representation, but show that every GE has a semidefinite representation whose size depends linearly on both its dimension and degree. In terms of expressiveness, we prove that for any integer $m\geq 2$, every symmetric full-dimensional polytope with $2m$ facets and every intersection of $m$ co-centered ellipsoids can be represented exactly as a GE-$d$ with $d \leq 2m-3$. Using this result, we show that every symmetric convex body can be approximated arbitrarily well by a GE-$d$ and we quantify the quality of the approximation as a function of the degree $d$. Finally, we present applications of GEs to several areas, such as time-varying portfolio optimization, stability analysis of switched linear systems, robust-to-dynamics optimization, and robust polynomial regression.

Summary

We haven't generated a summary for this paper yet.