Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Inference Using Material Point Method (2407.20287v1)

Published 26 Jul 2024 in cs.AI, stat.CO, and stat.ML

Abstract: A new gradient-based particle sampling method, MPM-ParVI, based on material point method (MPM), is proposed for variational inference. MPM-ParVI simulates the deformation of a deformable body (e.g. a solid or fluid) under external effects driven by the target density; transient or steady configuration of the deformable body approximates the target density. The continuum material is modelled as an interacting particle system (IPS) using MPM, each particle carries full physical properties, interacts and evolves following conservation dynamics. This easy-to-implement ParVI method offers deterministic sampling and inference for a class of probabilistic models such as those encountered in Bayesian inference (e.g. intractable densities) and generative modelling (e.g. score-based).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com