Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graded colour Lie superalgebras for solving Lévy-Leblond equations (2407.19723v2)

Published 29 Jul 2024 in math-ph and math.MP

Abstract: The L\'evy-Leblond equation with free potential admits a symmetry algebra that is a $ \mathbb{Z}_2\times\mathbb{Z}_2 $-graded colour Lie superalgebra (see arXiv:1609.08224). We extend this result in two directions by considering a time-independent version of the L\'evy-Leblond equation. First, we construct a $ \mathbb{Z}_23 $-graded colour Lie superalgebra containing operators that leave the eigenspaces invariant and demonstrate the utility of this algebra in constructing general solutions for the free equation. Second, we find that the ladder operators for the harmonic oscillator generate a $ \mathbb{Z}_2\times\mathbb{Z}_2 $-graded colour Lie superalgebra and we use the operators from this algebra to compute the spectrum. These results illustrate two points: the L\'evy-Leblond equation admits colour Lie superalgebras with gradings higher than $ \mathbb{Z}_2\times\mathbb{Z}_2 $ and colour Lie superalgebras appear for potentials besides the free potential.

Citations (4)

Summary

We haven't generated a summary for this paper yet.