Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BEMTrace: Visualization-driven approach for deriving Building Energy Models from BIM (2407.19464v2)

Published 28 Jul 2024 in cs.HC

Abstract: Building Information Modeling (BIM) describes a central data pool covering the entire life cycle of a construction project. Similarly, Building Energy Modeling (BEM) describes the process of using a 3D representation of a building as a basis for thermal simulations to assess the building's energy performance. This paper explores the intersection of BIM and BEM, focusing on the challenges and methodologies in converting BIM data into BEM representations for energy performance analysis. BEMTrace integrates 3D data wrangling techniques with visualization methodologies to enhance the accuracy and traceability of the BIM-to-BEM conversion process. Through parsing, error detection, and algorithmic correction of BIM data, our methods generate valid BEM models suitable for energy simulation. Visualization techniques provide transparent insights into the conversion process, aiding error identification, validation, and user comprehension. We introduce context-adaptive selections to facilitate user interaction and to show that the BEMTrace workflow helps users understand complex 3D data wrangling processes.

Summary

We haven't generated a summary for this paper yet.