Papers
Topics
Authors
Recent
Search
2000 character limit reached

Approximating particle-based clustering dynamics by stochastic PDEs

Published 12 Jul 2024 in q-bio.QM and math.PR | (2407.18952v2)

Abstract: This work proposes stochastic partial differential equations (SPDEs) as a practical tool to replicate clustering effects of more detailed particle-based dynamics. Inspired by membrane-mediated receptor dynamics on cell surfaces, we formulate a stochastic particle-based model for diffusion and pairwise interaction of particles, leading to intriguing clustering phenomena. Employing numerical simulation and cluster detection methods, we explore the approximation of the particle-based clustering dynamics through mean-field approaches. We find that SPDEs successfully reproduce spatiotemporal clustering dynamics, not only in the initial cluster formation period, but also on longer time scales where the successive merging of clusters cannot be tracked by deterministic mean-field models. The computational efficiency of the SPDE approach allows us to generate extensive statistical data for parameter estimation in a simpler model that uses a Markov jump process to capture the temporal evolution of the cluster number.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.