Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiently and accurately simulating multi-dimensional M-coupled nonlinear Schrödinger equations with fourth-order time integrators and Fourier spectral method (2407.18514v1)

Published 26 Jul 2024 in math.NA and cs.NA

Abstract: Coupled nonlinear Schr\"odinger equations model various physical phenomena, such as wave propagation in nonlinear optics, multi-component Bose-Einstein condensates, and shallow water waves. Despite their extensive applications, analytical solutions of coupled nonlinear Schr\"odinger equations are widely either unknown or challenging to compute, prompting the need for stable and efficient numerical methods to understand the nonlinear phenomenon and complex dynamics of systems governed by coupled nonlinear Schr\"odinger equations. This paper explores the use of the fourth-order Runge-Kutta based exponential time-differencing and integrating factor methods combined with the Fourier spectral method to simulate multi-dimensional M-coupled nonlinear Schr\"odinger equations. The theoretical derivation and stability of the methods, as well as the runtime complexity of the algorithms used for their implementation, are examined. Numerical experiments are performed on systems of two and four multi-dimensional coupled nonlinear Schr\"odinger equations. It is demonstrated by the results that both methods effectively conserve mass and energy while maintaining fourth-order temporal and spectral spatial convergence. Overall, it is shown by the numerical results that the exponential time-differencing method outperforms the integrating factor method in this application, and both may be considered further in modeling more nonlinear dynamics in future work.

Summary

We haven't generated a summary for this paper yet.