Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effect of Data Degradation on Motion Re-Identification (2407.18378v1)

Published 25 Jul 2024 in cs.CR and cs.HC

Abstract: The use of virtual and augmented reality devices is increasing, but these sensor-rich devices pose risks to privacy. The ability to track a user's motion and infer the identity or characteristics of the user poses a privacy risk that has received significant attention. Existing deep-network-based defenses against this risk, however, require significant amounts of training data and have not yet been shown to generalize beyond specific applications. In this work, we study the effect of signal degradation on identifiability, specifically through added noise, reduced framerate, reduced precision, and reduced dimensionality of the data. Our experiment shows that state-of-the-art identification attacks still achieve near-perfect accuracy for each of these degradations. This negative result demonstrates the difficulty of anonymizing this motion data and gives some justification to the existing data- and compute-intensive deep-network based methods.

Summary

We haven't generated a summary for this paper yet.