Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In Search of Metrics to Guide Developer-Based Refactoring Recommendations (2407.18169v1)

Published 25 Jul 2024 in cs.SE

Abstract: Context. Source code refactoring is a well-established approach to improving source code quality without compromising its external behavior. Motivation. The literature described the benefits of refactoring, yet its application in practice is threatened by the high cost of time, resource allocation, and effort required to perform it continuously. Providing refactoring recommendations closer to what developers perceive as relevant may support the broader application of refactoring in practice and drive prioritization efforts. Aim. In this paper, we aim to foster the design of a developer-based refactoring recommender, proposing an empirical study into the metrics that study the developer's willingness to apply refactoring operations. We build upon previous work describing the developer's motivations for refactoring and investigate how product and process metrics may grasp those motivations. Expected Results. We will quantify the value of product and process metrics in grasping developers' motivations to perform refactoring, thus providing a catalog of metrics for developer-based refactoring recommenders to use.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Mikel Robredo (7 papers)
  2. Matteo Esposito (24 papers)
  3. Fabio Palomba (37 papers)
  4. Valentina Lenarduzzi (51 papers)
  5. Rafael PeƱaloza (25 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com