Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LangOcc: Self-Supervised Open Vocabulary Occupancy Estimation via Volume Rendering (2407.17310v2)

Published 24 Jul 2024 in cs.CV

Abstract: The 3D occupancy estimation task has become an important challenge in the area of vision-based autonomous driving recently. However, most existing camera-based methods rely on costly 3D voxel labels or LiDAR scans for training, limiting their practicality and scalability. Moreover, most methods are tied to a predefined set of classes which they can detect. In this work we present a novel approach for open vocabulary occupancy estimation called LangOcc, that is trained only via camera images, and can detect arbitrary semantics via vision-language alignment. In particular, we distill the knowledge of the strong vision-language aligned encoder CLIP into a 3D occupancy model via differentiable volume rendering. Our model estimates vision-language aligned features in a 3D voxel grid using only images. It is trained in a self-supervised manner by rendering our estimations back to 2D space, where ground-truth features can be computed. This training mechanism automatically supervises the scene geometry, allowing for a straight-forward and powerful training method without any explicit geometry supervision. LangOcc outperforms LiDAR-supervised competitors in open vocabulary occupancy by a large margin, solely relying on vision-based training. We also achieve state-of-the-art results in self-supervised semantic occupancy estimation on the Occ3D-nuScenes dataset, despite not being limited to a specific set of categories, thus demonstrating the effectiveness of our proposed vision-language training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Simon Boeder (4 papers)
  2. Fabian Gigengack (3 papers)
  3. Benjamin Risse (19 papers)
Citations (2)