Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing Non-Nested Configurations of Multifidelity Machine Learning for Quantum-Chemical Properties (2407.17087v1)

Published 24 Jul 2024 in physics.chem-ph and cs.LG

Abstract: Multifidelity machine learning (MFML) for quantum chemical (QC) properties has seen strong development in the recent years. The method has been shown to reduce the cost of generating training data for high-accuracy low-cost ML models. In such a set-up, the ML models are trained on molecular geometries and some property of interest computed at various computational chemistry accuracies, or fidelities. These are then combined in training the MFML models. In some multifidelity models, the training data is required to be nested, that is the same molecular geometries are included to calculate the property across all the fidelities. In these multifidelity models, the requirement of a nested configuration restricts the kind of sampling that can be performed while selection training samples at different fidelities. This work assesses the use of non-nested training data for two of these multifidelity methods, namely MFML and optimized MFML (o-MFML). The assessment is carried out for the prediction of ground state energies and first vertical excitation energies of a diverse collection of molecules of the CheMFi dataset. Results indicate that the MFML method still requires a nested structure of training data across the fidelities. However, the o-MFML method shows promising results for non-nested multifidelity training data with model errors comparable to the nested configurations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.