Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Variance-Reduced Iterative Hard Thresholding in Graph Sparsity Optimization (2407.16968v1)

Published 24 Jul 2024 in stat.ML, cs.AI, and cs.LG

Abstract: Stochastic optimization algorithms are widely used for large-scale data analysis due to their low per-iteration costs, but they often suffer from slow asymptotic convergence caused by inherent variance. Variance-reduced techniques have been therefore used to address this issue in structured sparse models utilizing sparsity-inducing norms or $\ell_0$-norms. However, these techniques are not directly applicable to complex (non-convex) graph sparsity models, which are essential in applications like disease outbreak monitoring and social network analysis. In this paper, we introduce two stochastic variance-reduced gradient-based methods to solve graph sparsity optimization: GraphSVRG-IHT and GraphSCSG-IHT. We provide a general framework for theoretical analysis, demonstrating that our methods enjoy a linear convergence speed. Extensive experiments validate

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com