Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthetic Trajectory Generation Through Convolutional Neural Networks (2407.16938v1)

Published 24 Jul 2024 in cs.CR, cs.AI, and cs.LG

Abstract: Location trajectories provide valuable insights for applications from urban planning to pandemic control. However, mobility data can also reveal sensitive information about individuals, such as political opinions, religious beliefs, or sexual orientations. Existing privacy-preserving approaches for publishing this data face a significant utility-privacy trade-off. Releasing synthetic trajectory data generated through deep learning offers a promising solution. Due to the trajectories' sequential nature, most existing models are based on recurrent neural networks (RNNs). However, research in generative adversarial networks (GANs) largely employs convolutional neural networks (CNNs) for image generation. This discrepancy raises the question of whether advances in computer vision can be applied to trajectory generation. In this work, we introduce a Reversible Trajectory-to-CNN Transformation (RTCT) that adapts trajectories into a format suitable for CNN-based models. We integrated this transformation with the well-known DCGAN in a proof-of-concept (PoC) and evaluated its performance against an RNN-based trajectory GAN using four metrics across two datasets. The PoC was superior in capturing spatial distributions compared to the RNN model but had difficulty replicating sequential and temporal properties. Although the PoC's utility is not sufficient for practical applications, the results demonstrate the transformation's potential to facilitate the use of CNNs for trajectory generation, opening up avenues for future research. To support continued research, all source code has been made available under an open-source license.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jesse Merhi (1 paper)
  2. Erik Buchholz (7 papers)
  3. Salil S. Kanhere (96 papers)

Summary

We haven't generated a summary for this paper yet.