Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Securing Tomorrow's Smart Cities: Investigating Software Security in Internet of Vehicles and Deep Learning Technologies (2407.16410v1)

Published 23 Jul 2024 in cs.CR and cs.SE

Abstract: Integrating Deep Learning (DL) techniques in the Internet of Vehicles (IoV) introduces many security challenges and issues that require thorough examination. This literature review delves into the inherent vulnerabilities and risks associated with DL in IoV systems, shedding light on the multifaceted nature of security threats. Through an extensive analysis of existing research, we explore potential threats posed by DL algorithms, including adversarial attacks, data privacy breaches, and model poisoning. Additionally, we investigate the impact of DL on critical aspects of IoV security, such as intrusion detection, anomaly detection, and secure communication protocols. Our review emphasizes the complexities of ensuring the robustness, reliability, and trustworthiness of DL-based IoV systems, given the dynamic and interconnected nature of vehicular networks. Furthermore, we discuss the need for novel security solutions tailored to address these challenges effectively and enhance the security posture of DL-enabled IoV environments. By offering insights into these critical issues, this chapter aims to stimulate further research, innovation, and collaboration in securing DL techniques within the context of the IoV, thereby fostering a safer and more resilient future for vehicular communication and connectivity.

Summary

We haven't generated a summary for this paper yet.