Datasets of Visualization for Machine Learning (2407.16351v1)
Abstract: Datasets of visualization play a crucial role in automating data-driven visualization pipelines, serving as the foundation for supervised model training and algorithm benchmarking. In this paper, we survey the literature on visualization datasets and provide a comprehensive overview of existing visualization datasets, including their data types, formats, supported tasks, and openness. We propose a what-why-how model for visualization datasets, considering the content of the dataset (what), the supported tasks (why), and the dataset construction process (how). This model provides a clear understanding of the diversity and complexity of visualization datasets. Additionally, we highlight the challenges faced by existing visualization datasets, including the lack of standardization in data types and formats and the limited availability of large-scale datasets. To address these challenges, we suggest future research directions.
- A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang, and H. Qu, “AI4VIS: Survey on artificial intelligence approaches for data visualization,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 12, pp. 5049–5070, 2022.
- Q. Wang, Z. Chen, Y. Wang, and H. Qu, “A survey on ml4vis: Applying machine learning advances to data visualization,” vol. 28, no. 12, p. 5134–5153, dec 2022. [Online]. Available: https://doi.org/10.1109/TVCG.2021.3106142
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 248–255.
- S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh, “Vqa: Visual question answering,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 2425–2433.
- K. Hu, S. Gaikwad, M. Hulsebos, M. A. Bakker, E. Zgraggen, C. Hidalgo, T. Kraska, G. Li, A. Satyanarayan, and Ç. Demiralp, “Viznet: Towards a large-scale visualization learning and benchmarking repository,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2019, pp. 1–12.
- M. Oppermann, R. Kincaid, and T. Munzner, “Vizcommender: Computing text-based similarity in visualization repositories for content-based recommendations,” IEEE Trans. Vis. Comput. Graph., 2020.
- K. Hu, M. A. Bakker, S. Li, T. Kraska, and C. Hidalgo, “VizML: A machine learning approach to visualization recommendation,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2019, pp. 1–12.
- J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,” http://snap.stanford.edu/data, Jun. 2014.
- M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer, “ReVISion: Automated classification, analysis and redesign of chart images,” in Proceedings of the ACM Symposium on User Interface Software and Technology, 2011, pp. 393–402.
- M. A. Borkin, A. A. Vo, Z. Bylinskii, P. Isola, S. Sunkavalli, A. Oliva, and H. Pfister, “What makes a visualization memorable?” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2306–2315, 2013.
- Z. Chen, M. Cafarella, and E. Adar, “DiagramFlyer: A search engine for data-driven diagrams,” in Proceedings of the International Conference on World Wide Web, 2015, pp. 183–186.
- L. Harrison, K. Reinecke, and R. Chang, “Infographic aesthetics: Designing for the first impression,” in Proceedings of the ACM Conference on Human Factors in Computing Systems, 2015, pp. 1187–1190.
- P. Pasupat and P. Liang, “Compositional semantic parsing on semi-structured tables,” in Proceedings of the Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Association for Computational Linguistics, Jul. 2015, pp. 1470–1480.
- R. A. Rossi and N. K. Ahmed, “An interactive data repository with visual analytics,” SIGKDD Explor. Newsl., vol. 17, no. 2, p. 37–41, feb 2016. [Online]. Available: https://doi.org/10.1145/2897350.2897355
- N. Siegel, Z. Horvitz, R. Levin, S. Divvala, and A. Farhadi, “FigureSeer: Parsing result-figures in research papers,” in Proceedings of the European Conference on Computer Vision. Springer, 2016, pp. 664–680.
- J. Poco and J. Heer, “Reverse-engineering visualizations: Recovering visual encodings from chart images,” in Computer Graphics Forum, vol. 36, no. 3. Wiley Online Library, 2017, pp. 353–363.
- D. Jung, W. Kim, H. Song, J.-i. Hwang, B. Lee, B. Kim, and J. Seo, “Chartsense: Interactive data extraction from chart images,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 6706–6717.
- F. Amini, N. H. Riche, B. Lee, A. Monroy-Hernandez, and P. Irani, “Authoring data-driven videos with dataclips,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 501–510, 2017.
- N. W. Kim, Z. Bylinskii, M. A. Borkin, K. Z. Gajos, A. Oliva, F. Durand, and H. Pfister, “Bubbleview: An interface for crowdsourcing image importance maps and tracking visual attention,” ACM Transactions on Computer-Human Interaction (TOCHI), vol. 24, no. 5, pp. 1–40, 2017.
- S. E. Kahou, V. Michalski, A. Atkinson, Á. Kádár, A. Trischler, and Y. Bengio, “FigureQA: An annotated figure dataset for visual reasoning,” arXiv preprint arXiv:1710.07300, 2017.
- J. Sechler, L. Harrison, and E. M. Peck, “Sightline: Building on the web’s visualization ecosystem,” in Proceedings of the ACM SIGCHI Conference Extended Abstracts on Human Factors in Computing Systems, 2017, pp. 2049–2055.
- L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stonebraker, “Beagle: Automated extraction and interpretation of visualizations from the web,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2018, pp. 1–8.
- Y. Ma, A. K. Tung, W. Wang, X. Gao, Z. Pan, and W. Chen, “Scatternet: A deep subjective similarity model for visual analysis of scatterplots,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 3, pp. 1562–1576, 2018.
- Y. Luo, X. Qin, N. Tang, and G. Li, “DeepEye: Towards automatic data visualization,” in Proceedings of the IEEE International Conference on Data Engineering. IEEE, 2018, pp. 101–112.
- K. Kafle, B. Price, S. Cohen, and C. Kanan, “DVQA: Understanding Data Visualizations via Question Answering,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, jun 2018, pp. 5648–5656. [Online]. Available: https://ieeexplore.ieee.org/document/8578690/
- A. Y. Lin, J. Ford, E. Adar, and B. Hecht, “Vizbywiki: Mining data visualizations from the web to enrich news articles,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 873–882.
- M. Berger, J. Li, and J. A. Levine, “A generative model for volume rendering,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 4, pp. 1636–1650, 2018.
- D. Haehn, J. Tompkin, and H. Pfister, “Evaluating ‘graphical perception’with cnns,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 641–650, 2018.
- W. Cui, X. Zhang, Y. Wang, H. Huang, B. Chen, L. Fang, H. Zhang, J.-G. Lou, and D. Zhang, “Text-to-Viz: Automatic generation of infographics from proportion-related natural language statements,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 906–916, 2019.
- E. Hoque and M. Agrawala, “Searching the visual style and structure of d3 visualizations,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 1236–1245, 2019.
- Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu, “Towards automated infographic design: Deep learning-based auto-extraction of extensible timeline,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 917–926, 2019.
- V. Dibia and Ç. Demiralp, “Data2Vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural networks,” IEEE Computer Graphics and Applications, vol. 39, no. 5, pp. 33–46, 2019.
- M. Hulsebos, K. Hu, M. Bakker, E. Zgraggen, A. Satyanarayan, T. Kraska, Ç. Demiralp, and C. Hidalgo, “Sherlock: A deep learning approach to semantic data type detection,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1500–1508.
- W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. Nashed, and T. Peterka, “Insitunet: Deep image synthesis for parameter space exploration of ensemble simulations,” IEEE Trans. Vis. Comput. Graph., vol. 26, no. 1, pp. 23–33, 2019.
- F. Hong, C. Liu, and X. Yuan, “DNN-VolVis: Interactive volume visualization supported by deep neural network,” in Proceedings of the IEEE Pacific Visualization Symposium. IEEE, 2019, pp. 282–291.
- C. Liu, L. Xie, Y. Han, D. Wei, and X. Yuan, “Autocaption: An approach to generate natural language description from visualization automatically,” in Proceedings of the 2020 IEEE Pacific Visualization Symposium. IEEE, 2020, pp. 191–195.
- C. Lai, Z. Lin, R. Jiang, Y. Han, C. Liu, and X. Yuan, “Automatic annotation synchronizing with textual description for visualization,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2020, pp. 1–13.
- X. Chen, W. Zeng, Y. Lin, H. M. Al-Maneea, J. Roberts, and R. Chang, “Composition and configuration patterns in multiple-view visualizations,” IEEE Trans. Vis. Comput. Graph., 2021.
- D. Deng, Y. Wu, X. Shu, M. Xu, J. Wu, S. Fu, and Y. Wu, “VisImages: A large-scale, high-quality image corpus in visualization publications,” arXiv e-prints, pp. arXiv–2007, 2020.
- M. Lu, C. Wang, J. Lanir, N. Zhao, H. Pfister, D. Cohen-Or, and H. Huang, “Exploring visual information flows in infographics,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2020, pp. 1–12.
- C. Qian, S. Sun, W. Cui, J.-G. Lou, H. Zhang, and D. Zhang, “Retrieve-then-adapt: Example-based automatic generation for proportion-related infographics,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 443–452, 2020.
- F. Hohman, M. Conlen, J. Heer, and D. H. P. Chau, “Communicating with interactive articles,” Distill, vol. 5, no. 9, p. e28, 2020.
- R. Chaudhry, S. Shekhar, U. Gupta, P. Maneriker, P. Bansal, and A. Joshi, “Leaf-qa: Locate, encode & attend for figure question answering,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 3512–3521.
- H. Singh and S. Shekhar, “Stl-cqa: Structure-based transformers with localization and encoding for chart question answering,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 3275–3284.
- N. Methani, P. Ganguly, M. M. Khapra, and P. Kumar, “Plotqa: Reasoning over scientific plots,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 1527–1536.
- D. H. Kim, E. Hoque, and M. Agrawala, “Answering Questions about Charts and Generating Visual Explanations,” Conference on Human Factors in Computing Systems - Proceedings, pp. 1–13, 2020.
- C. Chen, R. Zhang, E. Koh, S. Kim, S. Cohen, and R. Rossi, “Figure captioning with relation maps for reasoning,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), March 2020.
- J. Zhao, M. Fan, and M. Feng, “ChartSeer: Interactive steering exploratory visual analysis with machine intelligence,” IEEE Trans. Vis. Comput. Graph., vol. 2626, no. c, pp. 1–1, 2020.
- D. Shi, X. Xu, F. Sun, Y. Shi, and N. Cao, “Calliope: Automatic visual data story generation from a spreadsheet,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 453–463, 2020.
- D. Engel and T. Ropinski, “Deep volumetric ambient occlusion,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1268–1278, 2020.
- Y. Zhang, Y. Sun, L. Padilla, S. Barua, E. Bertini, and A. G. Parker, “Mapping the landscape of covid-19 crisis visualizations,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2021, pp. 1–23.
- C. Lee, T. Yang, G. D. Inchoco, G. M. Jones, and A. Satyanarayan, “Viral visualizations: How coronavirus skeptics use orthodox data practices to promote unorthodox science online,” in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 2021, pp. 1–18.
- J. Chen, M. Ling, R. Li, P. Isenberg, T. Isenberg, M. Sedlmair, T. Moller, R. S. Laramee, H.-W. Shen, K. Wunsche et al., “Vis30k: A collection of figures and tables from ieee visualization conference publications,” IEEE Trans. Vis. Comput. Graph., 2021.
- J. Luo, Z. Li, J. Wang, and C.-Y. Lin, “Chartocr: Data extraction from charts images via a deep hybrid framework,” in Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2021, pp. 1917–1925.
- S. Madan, Z. Bylinskii, C. Nobre, M. Tancik, A. Recasens, K. Zhong, S. Alsheikh, A. Oliva, F. Durand, and H. Pfister, “Parsing and Summarizing Infographics with Synthetically Trained Icon Detection,” in 2021 IEEE 14th Pacific Visualization Symposium. IEEE, apr 2021, pp. 31–40. [Online]. Available: https://ieeexplore.ieee.org/document/9438764/
- D. Shi, F. Sun, X. Xu, X. Lan, D. Gotz, and N. Cao, “AutoClips: An automatic approach to video generation from data facts,” in Computer Graphics Forum, vol. 40, no. 3. Wiley Online Library, 2021, pp. 495–505.
- Y. Shi, X. Lan, J. Li, Z. Li, and N. Cao, “Communicating with motion: A design space for animated visual narratives in data videos,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2021, pp. 1–13.
- X. Lan, Y. Shi, Y. Wu, X. Jiao, and N. Cao, “Kineticharts: Augmenting affective expressiveness of charts in data stories with animation design,” IEEE Trans. Vis. Comput. Graph., 2022.
- X. Shu, A. Wu, J. Tang, B. Bach, Y. Wu, and H. Qu, “What makes a data-gif understandable?” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1492–1502, 2021.
- A. Srinivasan, N. Nyapathy, B. Lee, S. M. Drucker, and J. Stasko, “Collecting and characterizing natural language utterances for specifying data visualizations,” in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 2021, pp. 1–10.
- Y. Luo, N. Tang, G. Li, C. Chai, W. Li, and X. Qin, “Synthesizing natural language to visualization (nl2vis) benchmarks from nl2sql benchmarks,” in Proceedings of the 2021 International Conference on Management of Data, 2021, pp. 1235–1247.
- T.-Y. Hsu, C. L. Giles, and T.-H. Huang, “SciCap: Generating captions for scientific figures,” in Findings of the Association for Computational Linguistics: EMNLP 2021. Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 3258–3264. [Online]. Available: https://aclanthology.org/2021.findings-emnlp.277
- M. Zhou, Q. Li, X. He, Y. Li, Y. Liu, W. Ji, S. Han, Y. Chen, D. Jiang, and D. Zhang, “Table2charts: recommending charts by learning shared table representations,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 2389–2399.
- J. Han, H. Zheng, D. Z. Chen, and C. Wang, “STNet: An end-to-end generative framework for synthesizing spatiotemporal super-resolution volumes,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 1, pp. 270–280, 2021.
- A. Masry, D. Long, J. Q. Tan, S. Joty, and E. Hoque, “ChartQA: A benchmark for question answering about charts with visual and logical reasoning,” in Findings of the Association for Computational Linguistics: ACL 2022. Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 2263–2279. [Online]. Available: https://aclanthology.org/2022.findings-acl.177
- A. Wu, Y. Wang, M. Zhou, X. He, H. Zhang, H. Qu, and D. Zhang, “MultiVision: Designing Analytical Dashboards with Deep Learning Based Recommendation,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 1, pp. 162–172, 2022.
- G. Li and X. Yuan, “Gotreescape: Navigate and explore the tree visualization design space,” IEEE Trans. Vis. Comput. Graph., pp. 1–17, 2022.
- Y. Shi, P. Liu, S. Chen, M. Sun, and N. Cao, “Supporting expressive and faithful pictorial visualization design with visual style transfer,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 236–246, 2023.
- J. Han and C. Wang, “CoordNet: Data generation and visualization generation for time-varying volumes via a coordinate-based neural network,” IEEE Trans. Vis. Comput. Graph., 2022.
- C. Liu, Y. Guo, and X. Yuan, “Autotitle: An interactive title generator for visualizations,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–12, 2023.
- Y. Zhang, R. Jiang, L. Xie, Y. Zhao, C. Liu, T. Ding, S. Chen, and X. Yuan, “Oldvisonline: Curating a dataset of historical visualizations,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–11, 2023.
- E. E. Firat, D. Vytla, N. V. Singh, Z. Jiang, and R. S. Laramee, “Moneyvis: Open bank transaction data for visualization and beyond,” 2023.
- K. Davila, S. Setlur, D. Doermann, B. U. Kota, and V. Govindaraju, “Chart mining: A survey of methods for automated chart analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 11, pp. 3799–3819, 2021.
- X. Liu, M. S. Alharbi, J. Chen, A. Diehl, D. Rees, E. E. Firat, Q. Wang, and R. S. Laramee, “Visualization resources: A survey,” Information visualization, vol. 22, no. 1, pp. 3–30, 2023.
- C. Chen and Z. Liu, “The state of the art in creating visualization corpora for automated chart analysis,” Computer Graphics Forum, vol. 42, no. 3, pp. 449–470, 2023.
- “R datasets,” https://vincentarelbundock.github.io/Rdatasets/datasets.html.
- J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis and graph-mining library,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 8, no. 1, p. 1, 2016.
- V. Avsarkisov, S. Hoyas, M. Oberlack, and J. García-Galache, “Turbulent plane Couette flow at moderately high Reynolds number,” Journal of Fluid Mechanics, vol. 751, p. R1, Jul. 2014. [Online]. Available: https://www.cambridge.org/core/product/identifier/S0022112014003231/type/journal_article
- P. Bartashevich, W. Knors, and S. Mostaghim, “Vector Field Benchmark for Collective Search in Unknown Dynamic Environments,” in Swarm Intelligence, M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, and V. Trianni, Eds. Cham: Springer International Publishing, 2018, vol. 11172, pp. 411–419, series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-030-00533-7_36
- B. Kim, V. C. Azevedo, M. Gross, and B. Solenthaler, “Transport-Based Neural Style Transfer for Smoke Simulations,” ACM Transactions on Graphics, vol. 38, no. 6, pp. 1–11, Dec. 2019, arXiv:1905.07442 [cs]. [Online]. Available: http://arxiv.org/abs/1905.07442
- A. Moitinho, A. Krone-Martins, H. Savietto, M. Barros, C. Barata, A. J. Falcão, T. Fernandes, J. Alves, A. F. Silva, M. Gomes, J. Bakker, A. G. A. Brown, J. González-Núñez, G. Gracia-Abril, R. Gutiérrez-Sánchez, J. Hernández, S. Jordan, X. Luri, B. Merin, F. Mignard, A. Mora, V. Navarro, W. O’Mullane, T. Sagristà Sellés, J. Salgado, J. C. Segovia, E. Utrilla, F. Arenou, J. H. J. de Bruijne, F. Jansen, M. McCaughrean, K. S. O’Flaherty, M. B. Taylor, and A. Vallenari, “Gaia Data Release 1: The archive visualisation service,” Astronomy & Astrophysics, vol. 605, p. A52, Sep. 2017. [Online]. Available: http://www.aanda.org/10.1051/0004-6361/201731059
- X. Fu, Y. Wang, H. Dong, W. Cui, and H. Zhang, “Visualization assessment: A machine learning approach,” in Proceedings of the IEEE Visualization Conference, 2019, pp. 126–130.
- H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu, “Evaluating the readability of force directed graph layouts: A deep learning approach,” IEEE Computer Graphics and Applications, vol. 39, pp. 40–53, 2018.
- S. Cai, S.-H. Hong, J. Shen, and T. Liu, “A machine learning approach for predicting human preference for graph layouts,” in 2021 IEEE 14th Pacific Visualization Symposium, 2021, pp. 6–10.
- S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” in Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015.
- J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” ArXiv, vol. abs/1804.02767, 2018.
- J. Choi, S. Jung, D. G. Park, J. Choo, and N. Elmqvist, “Visualizing for the non-visual: Enabling the visually impaired to use visualization,” in Computer Graphics Forum, vol. 38, no. 3. Wiley Online Library, 2019, pp. 249–260.
- C. Liu, Y. Han, R. Jiang, and X. Yuan, “Advisor: Automatic visualization answer for natural-language question on tabular data,” in Proceedings of the 2021 IEEE 14th Pacific Visualization Symposium. IEEE, 2021, pp. 11–20.
- A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-Lite: A grammar of interactive graphics,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 341–350, 2016.
- J. Shen, H. Li, J. Xu, A. Biswas, and H.-W. Shen, “IDLat: An importance-driven latent generation method for scientific data,” IEEE Trans. Vis. Comput. Graph., vol. 29, no. 1, pp. 679–689, 2022.
- “Plotly,” https://chart-studio.plotly.com/feed/.
- G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.
- P.-s. Lee, J. D. West, and B. Howe, “Viziometrix: A platform for analyzing the visual information in big scholarly data,” in Proceedings of the International Conference Companion on World Wide Web, 2016, pp. 413–418.
- M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang, “Webtables: exploring the power of tables on the web,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 538–549, 2008.
- “Tableau public,” https://public.tableau.com/app/discover/trending.
- D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer, “Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 438–448, 2018.
- A. Wu, L. Xie, B. Lee, Y. Wang, W. Cui, and H. Qu, “Learning to automate chart layout configurations using crowdsourced paired comparison,” in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 2021, pp. 1–13.
- S. Fu, K. Xiong, X. Ge, S. Tang, W. Chen, and Y. Wu, “Quda: Natural language queries for visual data analytics,” arXiv preprint arXiv:2005.03257, 2020.
- M. Zhou, T. Wang, P. Ji, S. Han, and D. Zhang, “Table2Analysis: Modeling and recommendation of common analysis patterns for multi-dimensional data,” in AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, apr 2020, pp. 320–328. [Online]. Available: https://www.aiide.org/ojs/index.php/AAAI/article/view/5366
- J. Harper and M. Agrawala, “Deconstructing and restyling d3 visualizations,” in Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, 2014, pp. 253–262.
- S. Ray Choudhury and C. L. Giles, “An architecture for information extraction from figures in digital libraries,” in Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 667–672.
- Y. Zhang, Y. Wang, H. Zhang, B. Zhu, S. Chen, and D. Zhang, “Onelabeler: A flexible system for building data labeling tools,” in Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 2022, pp. 1–22.
- B. Vidgen and L. Derczynski, “Directions in abusive language training data, a systematic review: Garbage in, garbage out,” Plos one, vol. 15, no. 12, p. e0243300, 2020.
- M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” IEEE transactions on visualization and computer graphics, vol. 17, no. 12, pp. 2301–2309, 2011.
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in Proceedings of International Conference on Machine Learning, 2021, pp. 8748–8763.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
- D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. Van Der Maaten, “Exploring the limits of weakly supervised pretraining,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 181–196.
- Y. Zhang, B. Coecke, and M. Chen, “Mi3: Machine-initiated intelligent interaction for interactive classification and data reconstruction,” ACM Transactions on Interactive Intelligent Systems, vol. 11, no. 3-4, pp. 1–34, 2021.
- Can Liu (40 papers)
- Ruike Jiang (2 papers)
- Shaocong Tan (2 papers)
- Jiacheng Yu (4 papers)
- Chaofan Yang (3 papers)
- Hanning Shao (2 papers)
- Xiaoru Yuan (12 papers)