Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Computing for Climate Resilience and Sustainability Challenges (2407.16296v1)

Published 23 Jul 2024 in quant-ph and cs.AI

Abstract: The escalating impacts of climate change and the increasing demand for sustainable development and natural resource management necessitate innovative technological solutions. Quantum computing (QC) has emerged as a promising tool with the potential to revolutionize these critical areas. This review explores the application of quantum machine learning and optimization techniques for climate change prediction and enhancing sustainable development. Traditional computational methods often fall short in handling the scale and complexity of climate models and natural resource management. Quantum advancements, however, offer significant improvements in computational efficiency and problem-solving capabilities. By synthesizing the latest research and developments, this paper highlights how QC and quantum machine learning can optimize multi-infrastructure systems towards climate neutrality. The paper also evaluates the performance of current quantum algorithms and hardware in practical applications and presents realistic cases, i.e., waste-to-energy in anaerobic digestion, disaster prevention in flooding prediction, and new material development for carbon capture. The integration of these quantum technologies promises to drive significant advancements in achieving climate resilience and sustainable development.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. arXiv:2312.09784 [quant-ph]. url: http://arxiv.org/abs/2312.09784, doi:10.1103/PhysRevA.110.012430.
  2. arXiv:1904.09033 [physics]. url: http://arxiv.org/abs/1904.09033, doi:10.48550/arXiv.1904.09033.
  3. Publisher: Nature Publishing Group. url: https://www.nature.com/articles/s41534-020-00291-0, doi:10.1038/s41534-020-00291-0.
  4. arXiv:2103.03804 [quant-ph]. url: http://arxiv.org/abs/2103.03804, doi:10.1142/S0219749921500398.
  5. url: http://dx.doi.org/10.1021/acs.chemrev.9b00829, doi:10.1021/acs.chemrev.9b00829.
  6. url: http://dx.doi.org/10.1038/s41534-022-00599-z, doi:10.1038/s41534-022-00599-z.
  7. The Variational Quantum Eigensolver: a review of methods and best practices.
  8. doi:https://doi.org/10.1002/qua.27097.
  9. doi:10.1186/s41313-021-00032-6.
  10. doi:10.1038/s42005-022-00982-4.
  11. Number: 5. url: https://www.chimia.ch/chimia/article/view/2015_274, doi:10.2533/chimia.2015.274.
  12. Publisher: American Chemical Society. url: https://doi.org/10.1021/cr2003272, doi:10.1021/cr2003272.
  13. doi:10.1140/epjqt/s40507-022-00155-w.
  14. arXiv:1611.09347 [cond-mat, physics:quant-ph, stat]. url: http://arxiv.org/abs/1611.09347, doi:10.1038/nature23474.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Kin Tung Michael Ho (1 paper)
  2. Kuan-Cheng Chen (31 papers)
  3. Lily Lee (4 papers)
  4. Felix Burt (6 papers)
  5. Shang Yu (24 papers)
  6. Po-Heng (1 paper)
  7. Lee (12 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.