Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Learning for Face Recognition via Intra-subject Self-supervised Learning (2407.16289v1)

Published 23 Jul 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Federated Learning (FL) for face recognition aggregates locally optimized models from individual clients to construct a generalized face recognition model. However, previous studies present two major challenges: insufficient incorporation of self-supervised learning and the necessity for clients to accommodate multiple subjects. To tackle these limitations, we propose FedFS (Federated Learning for personalized Face recognition via intra-subject Self-supervised learning framework), a novel federated learning architecture tailored to train personalized face recognition models without imposing subjects. Our proposed FedFS comprises two crucial components that leverage aggregated features of the local and global models to cooperate with representations of an off-the-shelf model. These components are (1) adaptive soft label construction, utilizing dot product operations to reformat labels within intra-instances, and (2) intra-subject self-supervised learning, employing cosine similarity operations to strengthen robust intra-subject representations. Additionally, we introduce a regularization loss to prevent overfitting and ensure the stability of the optimized model. To assess the effectiveness of FedFS, we conduct comprehensive experiments on the DigiFace-1M and VGGFace datasets, demonstrating superior performance compared to previous methods.

Summary

We haven't generated a summary for this paper yet.