Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on congruences for generalized cubic partitions modulo primes (2407.15628v3)

Published 22 Jul 2024 in math.NT and math.CO

Abstract: Recently, Amdeberhan, Sellers, and Singh introduced the notion of a generalized cubic partition function $a_c(n)$ and proved two isolated congruences via modular forms, namely, $a_3(7n+4)\equiv 0\pmod{7}$ and $a_5(11n+10)\equiv 0\pmod{11}$. In this paper, we provide another proof of these congruences by using classical $q$-series manipulations. We also give infinite families of congruences for $a_c(n)$ for primes $p\not\equiv 1\pmod{8}$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com