Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature-dimension condition, rigidity theorems and entropy differential inequalities on Riemannian manifolds (2407.15576v1)

Published 22 Jul 2024 in math.DG

Abstract: In this paper, we use the information-theoretic approach to study curvature-dimension condition, rigidity theorems and entropy differential inequalities on Riemannian manifolds. We prove the equivalence of the ${\rm CD}(K, m)$-condition for $K\in \mathbb{R}$ and $m\in [n, \infty]$ and some entropy differential inequalities along the geodesics on the Wasserstein space over a Riemannian manifold. The rigidity models of the entropy differential inequalities are the $K$-Einstein manifolds and the $(K, m)$-Einstein manifolds with Hessian solitons. Moreover, we prove the monotonicity and rigidity theorem of the $W$-entropy along the geodesics on the Wasserstein space over Riemannian manifolds with CD$(0, m)$-condition. Finally, we compare our work with the synthetic geometry developed by Lott-Villani and Sturm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.