Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subthalamic Nucleus segmentation in high-field Magnetic Resonance data. Is space normalization by template co-registration necessary? (2407.15485v1)

Published 22 Jul 2024 in eess.IV and cs.CV

Abstract: Deep Brain Stimulation (DBS) is one of the most successful methods to diminish late-stage Parkinson's Disease (PD) symptoms. It is a delicate surgical procedure which requires detailed pre-surgical patient's study. High-field Magnetic Resonance Imaging (MRI) has proven its improved capacity of capturing the Subthalamic Nucleus (STN) - the main target of DBS in PD - in greater detail than lower field images. Here, we present a comparison between the performance of two different Deep Learning (DL) automatic segmentation architectures, one based in the registration to a brain template and the other performing the segmentation in in the MRI acquisition native space. The study was based on publicly available high-field 7 Tesla (T) brain MRI datasets of T1-weighted and T2-weighted sequences. nnUNet was used on the segmentation step of both architectures, while the data pre and post-processing pipelines diverged. The evaluation metrics showed that the performance of the segmentation directly in the native space yielded better results for the STN segmentation, despite not showing any advantage over the template-based method for the to other analysed structures: the Red Nucleus (RN) and the Substantia Nigra (SN).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tomás Lima (1 paper)
  2. Igor Varga (1 paper)
  3. Eduard Bakštein (1 paper)
  4. Victor Alves (26 papers)
  5. Daniel Novák (1 paper)

Summary

We haven't generated a summary for this paper yet.