Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning at a Glance: Towards Interpretable Data-limited Continual Semantic Segmentation via Semantic-Invariance Modelling (2407.15429v1)

Published 22 Jul 2024 in cs.CV

Abstract: Continual semantic segmentation (CSS) based on incremental learning (IL) is a great endeavour in developing human-like segmentation models. However, current CSS approaches encounter challenges in the trade-off between preserving old knowledge and learning new ones, where they still need large-scale annotated data for incremental training and lack interpretability. In this paper, we present Learning at a Glance (LAG), an efficient, robust, human-like and interpretable approach for CSS. Specifically, LAG is a simple and model-agnostic architecture, yet it achieves competitive CSS efficiency with limited incremental data. Inspired by human-like recognition patterns, we propose a semantic-invariance modelling approach via semantic features decoupling that simultaneously reconciles solid knowledge inheritance and new-term learning. Concretely, the proposed decoupling manner includes two ways, i.e., channel-wise decoupling and spatial-level neuron-relevant semantic consistency. Our approach preserves semantic-invariant knowledge as solid prototypes to alleviate catastrophic forgetting, while also constraining sample-specific contents through an asymmetric contrastive learning method to enhance model robustness during IL steps. Experimental results in multiple datasets validate the effectiveness of the proposed method. Furthermore, we introduce a novel CSS protocol that better reflects realistic data-limited CSS settings, and LAG achieves superior performance under multiple data-limited conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
  2. C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation,” International Journal of Computer Vision, vol. 129, pp. 3051–3068, 2021.
  3. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. B. Girshick, “Segment anything,” ArXiv, vol. abs/2304.02643, 2023.
  4. Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, pp. 2935–2947, 2018.
  5. A. Treisman and G. A. Gelade, “A feature-integration theory of attention,” Cognitive Psychology, vol. 12, pp. 97–136, 1980.
  6. T. Judd, K. A. Ehinger, F. Durand, and A. Torralba, “Learning to predict where humans look,” 2009 IEEE 12th International Conference on Computer Vision, pp. 2106–2113, 2009.
  7. H. Liu, Y. Zhou, B. Liu, J. Zhao, R. Yao, and Z. Shao, “Incremental learning with neural networks for computer vision: a survey,” Artificial Intelligence Review, vol. 56, pp. 4557–4589, 2022.
  8. E. Belouadah, A. Popescu, and I. Kanellos, “A comprehensive study of class incremental learning algorithms for visual tasks,” Neural Networks, vol. 135, pp. 38–54, 2021.
  9. C. de Masson D’Autume, S. Ruder, L. Kong, and D. Yogatama, “Episodic memory in lifelong language learning,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  10. M. Biesialska, K. Biesialska, and M. R. Costa-jussà, “Continual lifelong learning in natural language processing: A survey,” ArXiv, vol. abs/2012.09823, 2020.
  11. S. Bhat, B. Banerjee, S. Chaudhuri, and A. Bhattacharya, “Cilea-net: Curriculum-based incremental learning framework for remote sensing image classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 5879–5890, 2021.
  12. M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The sequential learning problem,” Psychology of Learning and Motivation, vol. 24, pp. 109–165, 1989.
  13. J. Bang, H. Kim, Y. J. Yoo, J.-W. Ha, and J. Choi, “Rainbow memory: Continual learning with a memory of diverse samples,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8214–8223, 2021.
  14. E. Belouadah and A. D. Popescu, “Il2m: Class incremental learning with dual memory,” IEEE/CVF International Conference on Computer Vision (ICCV), pp. 583–592, 2019.
  15. A. Chaudhry, A. Gordo, P. Dokania, P. Torr, and D. Lopez-Paz, “Using hindsight to anchor past knowledge in continual learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 8, 2021, pp. 6993–7001.
  16. C. D. Kim, J. Jeong, S. chul Moon, and G. Kim, “Continual learning on noisy data streams via self-purified replay,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 517–527, 2021.
  17. R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample selection for online continual learning,” vol. 32, 2019.
  18. B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama, “Co-teaching: Robust training of deep neural networks with extremely noisy labels,” vol. 31, 2018.
  19. D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experience replay for continual learning,” vol. 32, 2019.
  20. E. Fini, S. Lathuiliere, E. Sangineto, M. Nabi, and E. Ricci, “Online continual learning under extreme memory constraints,” in ECCV.   Springer, 2020, pp. 720–735.
  21. Y. Shi, L. Yuan, Y. Chen, and J. Feng, “Continual learning via bit-level information preserving,” CVPR, pp. 16 669–16 678, 2021.
  22. S. Ho, M. Liu, L. Du, L. Gao, and Y. Xiang, “Prototype-guided memory replay for continual learning,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2023.
  23. H. Ahn, S. Cha, D. Lee, and T. Moon, “Uncertainty-based continual learning with adaptive regularization,” vol. 32, 2019.
  24. F. Zhu, X.-Y. Zhang, C. Wang, F. Yin, and C.-L. Liu, “Prototype augmentation and self-supervision for incremental learning,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5867–5876, 2021.
  25. K. Zhu, Y. Cao, W. Zhai, J. Cheng, and Z. Zha, “Self-promoted prototype refinement for few-shot class-incremental learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6797–6806, 2021.
  26. K. Javed and M. White, “Meta-learning representations for continual learning,” vol. 32, 2019.
  27. Z. Wang, S. V. Mehta, B. Póczos, and J. G. Carbonell, “Efficient meta lifelong-learning with limited memory,” ArXiv, vol. abs/2010.02500, 2020.
  28. M. Banayeeanzade, R. Mirzaiezadeh, H. Hasani, and M. Soleymani, “Generative vs. discriminative: Rethinking the meta-continual learning,” vol. 34, 2021, pp. 21 592–21 604.
  29. J. Hurtado, A. Raymond, and A. Soto, “Optimizing reusable knowledge for continual learning via metalearning,” Advances in Neural Information Processing Systems, vol. 34, pp. 14 150–14 162, 2021.
  30. S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach, “Adversarial continual learning,” in ECCV 2020.   Springer, 2020, pp. 386–402.
  31. Y. Xiang, Y. Fu, P. Ji, and H. Huang, “Incremental learning using conditional adversarial networks,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6618–6627, 2019.
  32. V. K. Verma, K. J. Liang, N. Mehta, P. Rai, and L. Carin, “Efficient feature transformations for discriminative and generative continual learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13 860–13 870, 2021.
  33. J. Smith, Y.-C. Hsu, J. Balloch, Y. Shen, H. Jin, and Z. Kira, “Always be dreaming: A new approach for data-free class-incremental learning,” pp. 9374–9384, 2021.
  34. M. Kang, J. Park, and B. Han, “Class-incremental learning by knowledge distillation with adaptive feature consolidation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 16 071–16 080.
  35. A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle, “Podnet: Pooled outputs distillation for small-tasks incremental learning,” in ECCV, 2020, pp. 86–102.
  36. H.-J. Ye, S. Lu, and D.-C. Zhan, “Distilling cross-task knowledge via relationship matching,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12 393–12 402, 2020.
  37. J. Tian, X. Xu, Z. Wang, F. Shen, and X. Liu, “Relationship-preserving knowledge distillation for zero-shot sketch based image retrieval,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 5473–5481.
  38. T.-B. Xu and C.-L. Liu, “Deep neural network self-distillation exploiting data representation invariance,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, pp. 257–269, 2022.
  39. Q. Zhao, Y. Ma, S. Lyu, and L. Chen, “Embedded self-distillation in compact multibranch ensemble network for remote sensing scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  40. S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Lifelong learning via progressive distillation and retrospection,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 437–452.
  41. S. Ahn, S. X. Hu, A. C. Damianou, N. D. Lawrence, and Z. Dai, “Variational information distillation for knowledge transfer,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9155–9163, 2019.
  42. H. Slim, E. Belouadah, A.-S. Popescu, and D. M. Onchis, “Dataset knowledge transfer for class-incremental learning without memory,” IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3311–3320, 2022.
  43. M. Kanakis, D. Bruggemann, S. Saha, S. Georgoulis, A. Obukhov, and L. V. Gool, “Reparameterizing convolutions for incremental multi-task learning without task interference,” in ECCV, 2020, pp. 689–707.
  44. Y. Liu, B. Schiele, and Q. Sun, “Adaptive aggregation networks for class-incremental learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2544–2553, 2021.
  45. S. Yan, J. Xie, and X. He, “Der: Dynamically expandable representation for class incremental learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3013–3022, 2021.
  46. B. Yuan and D. Zhao, “A survey on continual semantic segmentation: Theory, challenge, method and application,” arXiv preprint arXiv:2310.14277, 2023.
  47. X. Hu, K. Tang, C. Miao, X. Hua, and H. Zhang, “Distilling causal effect of data in class-incremental learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3956–3965, 2021.
  48. P. Kaushik, A. Gain, A. Kortylewski, and A. L. Yuille, “Understanding catastrophic forgetting and remembering in continual learning with optimal relevance mapping,” ArXiv, vol. abs/2102.11343, 2021.
  49. A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian walk for incremental learning: Understanding forgetting and intransigence,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 532–547.
  50. U. Michieli and P. Zanuttigh, “Incremental learning techniques for semantic segmentation,” IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3205–3212, 2019.
  51. M. Klingner, A. Bär, P. Donn, and T. Fingscheidt, “Class-incremental learning for semantic segmentation re-using neither old data nor old labels,” 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8, 2020.
  52. F. Cermelli, M. Mancini, S. R. Bulò, E. Ricci, and B. Caputo, “Modeling the background for incremental learning in semantic segmentation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9230–9239, 2020.
  53. A. Douillard, Y. Chen, A. Dapogny, and M. Cord, “Plop: Learning without forgetting for continual semantic segmentation,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4039–4049, 2021.
  54. G. Yang, E. Fini, D. Xu, P. Rota, M. Ding, M. Nabi, X. Alameda-Pineda, and E. Ricci, “Uncertainty-aware contrastive distillation for incremental semantic segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 2567–2581, 2022.
  55. M. H. Phan, T.-A. Ta, S. L. Phung, L. Tran-Thanh, and A. Bouzerdoum, “Class similarity weighted knowledge distillation for continual semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 16 866–16 875.
  56. C.-B. Zhang, J.-W. Xiao, X. Liu, Y.-C. Chen, and M.-M. Cheng, “Representation compensation networks for continual semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 7053–7064.
  57. G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” ArXiv, vol. abs/1503.02531, 2015.
  58. Y. Liu, C. Shu, J. Wang, and C. Shen, “Structured knowledge distillation for dense prediction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 6, pp. 7035–7049, 2023.
  59. L. Wang and K.-J. Yoon, “Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 3048–3068, 2022.
  60. J. Li, X. Sun, W. Diao, P. Wang, Y. Feng, X. Lu, and G. Xu, “Class-incremental learning network for small objects enhancing of semantic segmentation in aerial imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–20, 2022.
  61. O. Tasar, Y. Tarabalka, and P. Alliez, “Incremental learning for semantic segmentation of large-scale remote sensing data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, pp. 3524–3537, 2019.
  62. L. Shan, W. Wang, K. Lv, and B. Luo, “Class-incremental learning for semantic segmentation in aerial imagery via distillation in all aspects,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2022.
  63. Y. Qiu, Y. Shen, Z. Sun, Y. Zheng, X. Chang, W. Zheng, and R. Wang, “Sats: Self-attention transfer for continual semantic segmentation,” Pattern Recognition, vol. 138, p. 109383, 2023.
  64. D. Zhao, B. Yuan, and Z. Shi, “Inherit with distillation and evolve with contrast: Exploring class incremental semantic segmentation without exemplar memory,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 10, pp. 11 932–11 947, 2023.
  65. S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and representation learning,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5533–5542, 2017.
  66. S. Cha, Y. Yoo, T. Moon et al., “Ssul: Semantic segmentation with unknown label for exemplar-based class-incremental learning,” Advances in neural information processing systems, vol. 34, pp. 10 919–10 930, 2021.
  67. A. Maracani, U. Michieli, M. Toldo, and P. Zanuttigh, “Recall: Replay-based continual learning in semantic segmentation,” IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7006–7015, 2021.
  68. L. Zhu, T. Chen, J. Yin, S. See, and J. Liu, “Continual semantic segmentation with automatic memory sample selection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 3082–3092.
  69. V. V. Ramasesh, A. Lewkowycz, and E. Dyer, “Effect of scale on catastrophic forgetting in neural networks,” in International Conference on Learning Representations, 2021.
  70. A. Cheraghian, S. Rahman, P. Fang, S. K. Roy, L. Petersson, and M. T. Harandi, “Semantic-aware knowledge distillation for few-shot class-incremental learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2534–2543, 2021.
  71. X. Xu, C. Deng, M. Yang, and H. Wang, “Progressive domain-independent feature decomposition network for zero-shot sketch-based image retrieval,” ArXiv, vol. abs/2003.09869, 2020.
  72. Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 1798–1828, 2012.
  73. Y. Alharbi and P. Wonka, “Disentangled image generation through structured noise injection,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5133–5141, 2020.
  74. Z. Wu, D. Lischinski, and E. Shechtman, “Stylespace analysis: Disentangled controls for stylegan image generation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12 858–12 867, 2020.
  75. H.-Y. Lee, H.-Y. Tseng, Q. Mao, J.-B. Huang, Y.-D. Lu, M. Singh, and M.-H. Yang, “Drit++: Diverse image-to-image translation via disentangled representations,” International Journal of Computer Vision, vol. 128, pp. 2402–2417, 2020.
  76. Y. Liu, E. Sangineto, Y. Chen, L. Bao, H. Zhang, N. Sebe, B. Lepri, W. Wang, and M. D. Nadai, “Smoothing the disentangled latent style space for unsupervised image-to-image translation,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10 780–10 789, 2021.
  77. Y.-C. Miao, X. Zhao, X. Fu, J.-L. Wang, and Y.-B. Zheng, “Hyperspectral denoising using unsupervised disentangled spatiospectral deep priors,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2021.
  78. T. Huang, S. Li, X. Jia, H. Lu, and J. zhuo Liu, “Neighbor2neighbor: A self-supervised framework for deep image denoising,” IEEE Transactions on Image Processing, vol. 31, pp. 4023–4038, 2022.
  79. B. Yuan, D. Zhao, S. Shao, Z. Yuan, and C. Wang, “Birds of a feather flock together: Category-divergence guidance for domain adaptive segmentation,” IEEE Transactions on Image Processing, vol. 31, pp. 2878–2892, 2022.
  80. C.-H. Yeh, C.-Y. Hong, Y.-C. Hsu, T.-L. Liu, Y. Chen, and Y. LeCun, “Decoupled contrastive learning,” in European Conference on Computer Vision.   Springer, 2022, pp. 668–684.
  81. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning.   PMLR, 2020, pp. 1597–1607.
  82. K. Wei, D. Chen, Y. Li, X. Yang, C. Deng, and D. Tao, “Incremental embedding learning with disentangled representation translation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 3, pp. 3821–3833, 2024.
  83. D. Baek, Y. Oh, S. Lee, J. Lee, and B. Ham, “Decomposed knowledge distillation for class-incremental semantic segmentation,” Advances in Neural Information Processing Systems, vol. 35, pp. 10 380–10 392, 2022.
  84. U. Michieli and P. Zanuttigh, “Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1114–1124, 2021.
  85. Q. Zhang, X. Wang, R. Cao, Y. N. Wu, F. Shi, and S.-C. Zhu, “Extraction of an explanatory graph to interpret a cnn,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 3863–3877, 2020.
  86. E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (xai): Toward medical xai,” IEEE transactions on neural networks and learning systems, vol. 32, no. 11, pp. 4793–4813, 2020.
  87. Z. Zhang, C. Xie, J. Wang, L. Xie, and A. L. Yuille, “Deepvoting: A robust and explainable deep network for semantic part detection under partial occlusion,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1372–1380, 2017.
  88. M. Abukmeil, A. Genovese, V. Piuri, F. Rundo, and F. Scotti, “Towards explainable semantic segmentation for autonomous driving systems by multi-scale variational attention,” 2021 IEEE International Conference on Autonomous Systems (ICAS), pp. 1–5, 2021.
  89. M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?” explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1135–1144.
  90. R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” International Journal of Computer Vision, vol. 128, pp. 336–359, 2016.
  91. A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks,” IEEE Winter Conference on Applications of Computer Vision, pp. 839–847, 2017.
  92. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.
  93. S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation,” PloS one, vol. 10, no. 7, p. e0130140, 2015.
  94. D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling lime and shap: Adversarial attacks on post hoc explanation methods,” in Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020, pp. 180–186.
  95. M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes challenge: A retrospective,” International Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, 2015.
  96. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through ade20k dataset,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 633–641.
  97. F. Rottensteiner, G. Sohn, M. Gerke, and J. D. Wegner, “Isprs semantic labeling contest,” ISPRS: Leopoldshöhe, Germany, vol. 1, no. 4, 2014.
  98. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” ArXiv, vol. abs/1706.05587, 2017.
  99. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  100. J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceedings of the National Academy of Sciences, vol. 114, pp. 3521 – 3526, 2017.
  101. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation.” in ECCV, 2018, pp. 833–851.
  102. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022.
  103. L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html
Citations (3)

Summary

We haven't generated a summary for this paper yet.