Computing Stokes flows in periodic channels via rational approximation
Abstract: Rational approximation has proven to be a powerful method for solving two-dimensional (2D) fluid problems. At small Reynolds numbers, 2D Stokes flows can be represented by two analytic functions, known as Goursat functions. Xue, Waters and Trefethen [SIAM J. Sci. Comput., 46 (2024), pp. A1214-A1234] recently introduced the LARS algorithm (Lightning-AAA Rational Stokes) for computing 2D Stokes flows in general domains by approximating the Goursat functions using rational functions. In this paper, we introduce a new algorithm for computing 2D Stokes flows in periodic channels using trigonometric rational functions, with poles placed via the AAA-LS algorithm [Costa and Trefethen, European Congr. Math., 2023] in a conformal map of the domain boundary. We apply the algorithm to Poiseuille and Couette problems between various periodic channel geometries, where solutions are computed to at least 6-digit accuracy in less than 1 second. The applicability of the algorithm is highlighted in the computation of the dynamics of fluid particles in unsteady Couette flows.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.