Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mating parabolic rational maps with Hecke groups (2407.14780v1)

Published 20 Jul 2024 in math.DS, math.CV, and math.GR

Abstract: We prove that any degree $d$ rational map having a parabolic fixed point of multiplier $1$ with a fully invariant and simply connected immediate basin of attraction is mateable with the Hecke group $H_{d+1}$, with the mating realized by an algebraic correspondence. This solves the parabolic version of the Bullett-Freiberger Conjecture from 2003 on mateability between rational maps and Hecke groups. The proof is in two steps. The first is the construction of a pinched polynomial-like map which is a mating between a parabolic rational map and a parabolic circle map associated to the Hecke group. The second is lifting this pinched polynomial-like map to an algebraic correspondence via a suitable branched covering.

Citations (2)

Summary

We haven't generated a summary for this paper yet.