Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Radial Basis Function Neural Network for Solving Multiscale Elliptic Equations (2407.14745v1)

Published 20 Jul 2024 in math.NA and cs.NA

Abstract: To overcome these obstacles and improve computational accuracy and efficiency, this paper presents the Randomized Radial Basis Function Neural Network (RRNN), an innovative approach explicitly crafted for solving multiscale elliptic equations. The RRNN method commences by decomposing the computational domain into non-overlapping subdomains. Within each subdomain, the solution to the localized subproblem is approximated by a randomized radial basis function neural network with a Gaussian kernel. This network is distinguished by the random assignment of width and center coefficients for its activation functions, thereby rendering the training process focused solely on determining the weight coefficients of the output layer. For each subproblem, similar to the Petrov-Galerkin finite element method, a linear system will be formulated on the foundation of a weak formulation. Subsequently, a selection of collocation points is stochastically sampled at the boundaries of the subdomain, ensuring satisfying $C0$ and $C1$ continuity and boundary conditions to couple these localized solutions. The network is ultimately trained using the least squares method to ascertain the output layer weights. To validate the RRNN method's effectiveness, an extensive array of numerical experiments has been executed and the results demonstrate that the proposed method can improve the accuracy and efficiency well.

Summary

We haven't generated a summary for this paper yet.