Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving GBDT Performance on Imbalanced Datasets: An Empirical Study of Class-Balanced Loss Functions (2407.14381v1)

Published 19 Jul 2024 in cs.LG

Abstract: Class imbalance remains a significant challenge in machine learning, particularly for tabular data classification tasks. While Gradient Boosting Decision Trees (GBDT) models have proven highly effective for such tasks, their performance can be compromised when dealing with imbalanced datasets. This paper presents the first comprehensive study on adapting class-balanced loss functions to three GBDT algorithms across various tabular classification tasks, including binary, multi-class, and multi-label classification. We conduct extensive experiments on multiple datasets to evaluate the impact of class-balanced losses on different GBDT models, establishing a valuable benchmark. Our results demonstrate the potential of class-balanced loss functions to enhance GBDT performance on imbalanced datasets, offering a robust approach for practitioners facing class imbalance challenges in real-world applications. Additionally, we introduce a Python package that facilitates the integration of class-balanced loss functions into GBDT workflows, making these advanced techniques accessible to a wider audience.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets