Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair Overlap Number of Balls (Fair-ONB): A Data-Morphology-based Undersampling Method for Bias Reduction (2407.14210v2)

Published 19 Jul 2024 in cs.LG and cs.AI

Abstract: One of the key issues regarding classification problems in Trustworthy Artificial Intelligence is ensuring Fairness in the prediction of different classes when protected (sensitive) features are present. Data quality is critical in these cases, as biases in training data can be reflected in machine learning, impacting human lives and failing to comply with current regulations. One strategy to improve data quality and avoid these problems is preprocessing the dataset. Instance selection via undersampling can foster balanced learning of classes and protected feature values. Performing undersampling in class overlap areas close to the decision boundary should bolster the impact on the classifier. This work proposes Fair Overlap Number of Balls (Fair-ONB), an undersampling method that harnesses the data morphology of the different data groups (obtained from the combination of classes and protected feature values) to perform guided undersampling in overlap areas. It employs attributes of the ball coverage of the groups, such as the radius, number of covered instances and density, to select the most suitable areas for undersampling and reduce bias. Results show that the Fair-ONB method improves model Fairness with low impact on the classifier's predictive performance.

Summary

We haven't generated a summary for this paper yet.