Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a $d$-degree Erdős-Ko-Rado Theorem (2407.14091v1)

Published 19 Jul 2024 in math.CO

Abstract: A family of subsets $\mathcal{F}$ is intersecting if $A \cap B \neq \emptyset$ for any $A, B \in \mathcal{F}$. In this paper, we show that for given integers $k > d \ge 2$ and $n \ge 2k+2d-3$, and any intersecting family $\mathcal{F}$ of $k$-subsets of ${1, \cdots, n}$, there exists a $d$-subset of $[n]$ contained in at most $\binom{n-d-1}{k-d-1}$ subsets of $\mathcal{F}$. This result, proved using spectral graph theory, gives a $d$-degree generalization of the celebrated Erd\H{o}s-Ko-Rado Theorem, improving a theorem of Kupavskii.

Citations (1)

Summary

We haven't generated a summary for this paper yet.