Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HazeCLIP: Towards Language Guided Real-World Image Dehazing (2407.13719v1)

Published 18 Jul 2024 in cs.CV

Abstract: Existing methods have achieved remarkable performance in single image dehazing, particularly on synthetic datasets. However, they often struggle with real-world hazy images due to domain shift, limiting their practical applicability. This paper introduces HazeCLIP, a language-guided adaptation framework designed to enhance the real-world performance of pre-trained dehazing networks. Inspired by the Contrastive Language-Image Pre-training (CLIP) model's ability to distinguish between hazy and clean images, we utilize it to evaluate dehazing results. Combined with a region-specific dehazing technique and tailored prompt sets, CLIP model accurately identifies hazy areas, providing a high-quality, human-like prior that guides the fine-tuning process of pre-trained networks. Extensive experiments demonstrate that HazeCLIP achieves the state-of-the-art performance in real-word image dehazing, evaluated through both visual quality and no-reference quality assessments. The code is available: https://github.com/Troivyn/HazeCLIP .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Ruiyi Wang (11 papers)
  2. Wenhao Li (136 papers)
  3. Xiaohong Liu (117 papers)
  4. Chunyi Li (67 papers)
  5. Zicheng Zhang (124 papers)
  6. Xiongkuo Min (141 papers)
  7. Guangtao Zhai (233 papers)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com