Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COMCAT: Leveraging Human Judgment to Improve Automatic Documentation and Summarization (2407.13648v1)

Published 18 Jul 2024 in cs.SE

Abstract: Software maintenance constitutes a substantial portion of the total lifetime costs of software, with a significant portion attributed to code comprehension. Software comprehension is eased by documentation such as comments that summarize and explain code. We present COMCAT, an approach to automate comment generation by augmenting LLMs with expertise-guided context to target the annotation of source code with comments that improve comprehension. Our approach enables the selection of the most relevant and informative comments for a given snippet or file containing source code. We develop the COMCAT pipeline to comment C/C++ files by (1) automatically identifying suitable locations in which to place comments, (2) predicting the most helpful type of comment for each location, and (3) generating a comment based on the selected location and comment type. In a human subject evaluation, we demonstrate that COMCAT-generated comments significantly improve developer code comprehension across three indicative software engineering tasks by up to 12% for 87% of participants. In addition, we demonstrate that COMCAT-generated comments are at least as accurate and readable as human-generated comments and are preferred over standard ChatGPT-generated comments for up to 92% of snippets of code. Furthermore, we develop and release a dataset containing source code snippets, human-written comments, and human-annotated comment categories. COMCAT leverages LLMs to offer a significant improvement in code comprehension across a variety of human software engineering tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Skyler Grandel (2 papers)
  2. Scott Thomas Andersen (2 papers)
  3. Yu Huang (176 papers)
  4. Kevin Leach (29 papers)

Summary

We haven't generated a summary for this paper yet.