Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-stage tomography based on eigenanalysis for high-dimensional dense unitary processes in gate-based quantum computers (2407.13542v2)

Published 18 Jul 2024 in quant-ph and physics.data-an

Abstract: Quantum Process Tomography (QPT) methods aim at identifying, i.e. estimating, a quantum process. QPT is a major quantum information processing tool, since it especially allows one to experimentally characterize the actual behavior of quantum gates, that may be used as the building blocks of quantum computers. We here consider unitary, possibly dense (i.e. without sparsity constraints) processes, which corresponds to isolated systems. Moreover, we develop QPT methods that are applicable to a significant number of qubits and hence to a high state space dimension, which allows one to tackle more complex problems. Using the unitarity of the process allows us to develop methods that first achieve part of QPT by performing an eigenanalysis of the estimated density matrix of a process output. Building upon this idea, we first develop a class of complete algorithms that are single-stage, in the sense that they use only one eigendecomposition. We then extend them to multiple-stage algorithms (i.e. with several eigendecompositions), in order to address high-dimensional state spaces while being less limited by the estimation errors made when using an arbitrary given Quantum State Tomography (QST) algorithm as a building block of our overall methods. We first propose two-stage methods and we then extend them to dichotomic methods, whose number of stages increases with the considered state space dimension. The relevance of our methods is validated with simulations. Single-stage and two-stage methods efficiently apply up to 13 qubits on a standard PC (with 16 GB of RAM). Multi-stage methods yield an even higher accuracy.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com